Capacitively Coupled Charge Qubits: Difference between revisions

Jump to navigation Jump to search
 
* <math>Z_1</math> gate (<math>Z</math> on qubit 1)
*# Wait for a time <math>\tau = \frac{h}{2(\lambda_1+\lambda_2)}</math> (always on)
* <math>Z_2</math> gate (<math>Z</math> on qubit 2)
*# Wait for a time <math>\tau = \frac{h}{2(\lambda_1-\lambda_2)}</math> (always on)
* <math>X_1</math> gate (<math>X</math> on qubit 1)
*# Pulse <math>\epsilon_1</math> at a frequency of <math>\omega_{AC} = (\lambda_1+\lambda_2)/\hbar</math> for a time <math>\tau = \frac{2h}{A_2}</math>
* <math>X_2</math> gate (<math>X</math> on qubit 2)
*# Pulse <math>\epsilon_2</math> at a frequency of <math>\omega_{AC} = (\lambda_1-\lambda_2)/\hbar</math> for a time <math>\tau = \frac{2h}{C_1}</math>
* <math>\text{CNOT}_1</math> gate (<math>\text{CNOT}</math> with qubit 1 as control)
*# Pulse <math>\epsilon_1</math> at a frequency of <math>\omega_{AC} = (\lambda_1-\lambda_2)/\hbar</math> for a time <math>\tau = \frac{h}{A_1}</math>
*# Pulse <math>\epsilon_2</math> at a frequency of <math>\omega_{AC} = (\lambda_1-\lambda_2)/\hbar</math> for a time <math>\tau = \frac{h}{C_1}</math>
* <math>\text{CNOT}_2</math> gate (<math>\text{CNOT}</math> with qubit 2 as control)
*# Pulse <math>\epsilon_2</math> at a frequency of <math>\omega_{AC} = (\lambda_1+\lambda_2)/\hbar</math> for a time <math>\tau = \frac{h}{C_2}</math>
*# Pulse <math>\epsilon_1</math> at a frequency of <math>\omega_{AC} = (\lambda_1+\lambda_2)/\hbar</math> for a time <math>\tau = \frac{3h}{A_2}</math>
* <math>\text{SWAP}</math>
*# Pulse either <math>\Delta_1</math> or <math>\Delta_2</math> at a frequency of <math>\omega_{AC} = 2\lambda_2/\hbar</math> for a time <math>\tau = \frac{2h\lambda_2}{Bg}</math>
 
===Notes on Logical Operating Points===

Navigation menu