Capacitively Coupled Charge Qubits: Difference between revisions

Jump to navigation Jump to search
 
<math>
\lambda_1 = -\sqrt{\Delta_1^2+\Delta_2^2+\frac{\epsilon_1^2}{4}+g^2+\sqrt{4\Delta_1^2\Delta_2^2+\epsilon_1^2(\Delta_2^2+g^2)}}
</math>
 
<math>
\lambda_2 = -\sqrt{\Delta_1^2+\Delta_2^2+\frac{\epsilon_1^2}{4}+g^2-\sqrt{4\Delta_1^2\Delta_2^2+\epsilon_1^2(\Delta_2^2+g^2)}}
</math>
 
<math>
\lambda_3 = \sqrt{\Delta_1^2+\Delta_2^2+\frac{\epsilon_1^2}{4}+g^2-\sqrt{4\Delta_1^2\Delta_2^2+\epsilon_1^2(\Delta_2^2+g^2)}}
</math>
 
<math>
\lambda_4 = \sqrt{\Delta_1^2+\Delta_2^2+\frac{\epsilon_1^2}{4}+g^2+\sqrt{4\Delta_1^2\Delta_2^2+\epsilon_1^2(\Delta_2^2+g^2)}}
</math>
 
 
<math>
\lambda_2 \approx \lambda_2^0 + \frac{\Delta_2(\Delta_1+-\Delta_2)-g^2}{8\Delta_1\Delta_2\lambda_2^0}\epsilon_1^2
</math>
 
<math>
\lambda_3 \approx \lambda_3^0 + \frac{\Delta_2(\Delta_1+-\Delta_2)-g^2}{8\Delta_1\Delta_2\lambda_3^0}\epsilon_1^2
</math>
 
</math>
 
SimilarlyUnfortunately, tonone makeof the other transitions betweencan <math>|00\rangle</math>be andmade <math>|01\rangle</math>to andbe betweeninvariant <math>|10\rangle</math>to andsecond order fluctuations in <math>|11\rangleepsilon_1</math>. flatIf we wish to make this transition invariant to all second order indetuning fluctuations, we must set <math>\epsilon_1Delta_1 = \Delta_2</math>, weand can<math>g set= \sqrt{2}\Delta_1</math>.
 
<math>
g^2 = \frac{1}{2\Delta_2}\left((\Delta_1+\Delta_2)\sqrt{(\Delta_1+\Delta_2)(\Delta_1^3-\Delta_1^2\Delta_2+3\Delta_1\Delta_2^2+\Delta_2^3)}-\Delta_1^3-\Delta_1^2\Delta_2-\Delta_1\Delta_2^2-\Delta_2^3\right)
</math>
 
===Tunnel Coupling and Capacitive Coupling Noise===

Navigation menu