Capacitively Coupled Charge Qubits: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
No edit summary
[[Image:Detuning graph.png|thumb|Energy levels of the 2 qubit system as a function of both detunings.|300px]]
For a single charge qubit, the Hamiltonian is
:<math>
 
\begin{equation}
H_i = \left( \begin{matrix}
\epsilon_i/2 & \Delta_i \\
\Delta_i & -\epsilon_i/2
\end{matrix}\right)
</math>
\end{equation}
 
We will refer to $\epsilon_i$ and $\Delta_i$ as the \emph{detuning} and \emph{tunnel coupling} of qubit $i$, respectively.
 
We can further write down the full Hamiltonian explicitly:
 
:<math>
\begin{equation}
H = \left( \begin{matrix}
\frac{1}{2}(\epsilon_1+\epsilon_2) + g & \Delta_2 & \Delta_1 & 0 \\
0 & \Delta_1 & \Delta_2 & \frac{1}{2}(-\epsilon_1-\epsilon_2) + g
\end{matrix}\right)
</math>
\end{equation}
 
 

Navigation menu