Capacitively Coupled Charge Qubits: Difference between revisions

Jump to navigation Jump to search
0 & 0 & 0 & -B
\end{matrix}\right)\cos{(\omega_{AC}t)}</math> || <math>\frac{1}{2}\left( \begin{matrix}
0 & A_1\times\text{Sign}(\Delta_1-\Delta_2) & -A_2 & 0 \\
A_1\times\text{Sign}(\Delta_1-\Delta_2) & 0 & 0 & -A_2\times\text{Sign}(\Delta_1-\Delta_2) \\
-A_2 & 0 & 0 & -A_1 \\
0 & -A_2\times\text{Sign}(\Delta_1-\Delta_2) & -A_1 & 0
\end{matrix}\right)\cos{(\omega_{AC}t)}</math>
|-
0 & 0 & 0 & -B
\end{matrix}\right)\cos{(\omega_{AC}t)}</math> || <math>\frac{1}{2}\left( \begin{matrix}
0 & -C_1\times\text{Sign}(\Delta_1-\Delta_2) & -C_2 & 0 \\
-C_1\times\text{Sign}(\Delta_1-\Delta_2) & 0 & 0 & C_2\times\text{Sign}(\Delta_1-\Delta_2) \\
C_1 & 0 & 0 & C_3 \\
-C_2 & 0 & 0 & C_4-C_1 \\
0 & C_3C_2\times\text{Sign}(\Delta_1-\Delta_2) & C_4-C_1 & 0
\end{matrix}\right)\cos{(\omega_{AC}t)}</math>
|-
0 & B\frac{\Delta_1-\Delta_2}{\lambda_2} & B\frac{g}{\lambda_2}\times\text{Sign}(\Delta_1-\Delta_2) & 0 \\
0 & B\frac{g}{\lambda_2}\times\text{Sign}(\Delta_1-\Delta_2) & -B\frac{\Delta_1-\Delta_2}{\lambda_2} & 0 \\
-B\frac{g}{\lambda_1}& 0 & 0 &B\frac{\Delta_1+\Delta_2}{\lambda_1}
\end{matrix}\right)\cos{(\omega_{AC}t)}</math>
|}
 
 
{| border="1" cellpadding="2"
!width="50"|AC Pulse
!width="225"|Energy Basis (<math>\Delta_1>\Delta_2</math>)
!width="225"|Energy Basis (<math>\Delta_1<\Delta_2</math>)
|-
|<math>\epsilon_1</math> || <math>\frac{1}{2}\left( \begin{matrix}
0 & A_1 & -A_2 & 0 \\
A_1 & 0 & 0 & -A_2 \\
-A_2 & 0 & 0 & -A_1 \\
0 & -A_2 & -A_1 & 0
\end{matrix}\right)\cos{(\omega_{AC}t)}</math> || <math>\frac{1}{2}\left( \begin{matrix}
0 & -A_1 & -A_2 & 0 \\
-A_1 & 0 & 0 & A_2 \\
-A_2 & 0 & 0 & -A_1 \\
0 & A_2 & -A_1 & 0
\end{matrix}\right)\cos{(\omega_{AC}t)}</math>
|-
|<math>\epsilon_2</math> || <math>\frac{1}{2}\left( \begin{matrix}
0 & -C_1 & -C_2 & 0 \\
-C_1 & 0 & 0 & C_3C_2 \\
-C_2 & 0 & 0 & -C_1 \\
0 & C_2 & -C_1 & 0
\end{matrix}\right)\cos{(\omega_{AC}t)}</math> || <math>\frac{1}{2}\left( \begin{matrix}
0 & C_1 & -C_2 & 0 \\
C_1 & 0 & 0 & -C_2 \\
-C_2 & 0 & 0 & -C_1 \\
0 & -C_2 & -C_1 & 0
\end{matrix}\right)\cos{(\omega_{AC}t)}</math>
|-
|<math>\Delta_1</math> || <math>\frac{1}{2}\left( \begin{matrix}
-B\frac{\Delta_1+\Delta_2}{\lambda_1} & 0 & 0 & -B\frac{g}{\lambda_1} \\
0 & -B\frac{\Delta_1-\Delta_2}{\lambda_2} & -B\frac{g}{\lambda_2} & 0 \\
0& -B\frac{g}{\lambda_2} & B\frac{\Delta_1-\Delta_2}{\lambda_2} & 0\\
-B\frac{g}{\lambda_1}& 0 & 0 &B\frac{\Delta_1+\Delta_2}{\lambda_1}
\end{matrix}\right)\cos{(\omega_{AC}t)}</math> || <math>\frac{1}{2}\left( \begin{matrix}
-B\frac{\Delta_1+\Delta_2}{\lambda_1} & 0 & 0 & -B\frac{g}{\lambda_1} \\
0 & -B\frac{\Delta_1-\Delta_2}{\lambda_2} & B\frac{g}{\lambda_2} & 0 \\
0& B\frac{g}{\lambda_2} & B\frac{\Delta_1-\Delta_2}{\lambda_2} & 0\\
-B\frac{g}{\lambda_1}& 0 & 0 &B\frac{\Delta_1+\Delta_2}{\lambda_1}
\end{matrix}\right)\cos{(\omega_{AC}t)}</math>
|-
|<math>\Delta_2</math> || <math>\frac{1}{2}\left( \begin{matrix}
-B\frac{\Delta_1+\Delta_2}{\lambda_1} & 0 & 0 & -B\frac{g}{\lambda_1} \\
0 & B\frac{\Delta_1-\Delta_2}{\lambda_2} & B\frac{g}{\lambda_2} & 0 \\
0 & B\frac{g}{\lambda_2} & -B\frac{\Delta_1-\Delta_2}{\lambda_2} & 0 \\
-B\frac{g}{\lambda_1}& 0 & 0 &B\frac{\Delta_1+\Delta_2}{\lambda_1}
\end{matrix}\right)\cos{(\omega_{AC}t)}</math> || <math>\frac{1}{2}\left( \begin{matrix}
-B\frac{\Delta_1+\Delta_2}{\lambda_1} & 0 & 0 & -B\frac{g}{\lambda_1} \\
0 & B\frac{\Delta_1-\Delta_2}{\lambda_2} & -B\frac{g}{\lambda_2} & 0 \\
0 & -B\frac{g}{\lambda_2} & -B\frac{\Delta_1-\Delta_2}{\lambda_2} & 0 \\
-B\frac{g}{\lambda_1}& 0 & 0 &B\frac{\Delta_1+\Delta_2}{\lambda_1}
\end{matrix}\right)\cos{(\omega_{AC}t)}</math>

Navigation menu