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0.1 Pulse Generation This figure illustrates pulse generation with a spectrum containing
only three frequencies. The violet, green, and red electric fields interfere to create
the pulse structure of the total black field, a superposition of the other three. The
vertical blue dotted lines mark the bright pulses, times of constructive interference. In
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1.2 Acousto-Optic Modulator An acousto-optic modulator uses pressure waves to create
a time-varying index of refraction in a crystalline structure. This time-varying index
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of an exchange of momentum between phonons in the crystal and incident photons. . . 10

1.3 Electro-Optic Modulator An electro-optic modulator uses an alternating electric field
to create a time-varying index of refraction in a crystalline structure. This time-
varying index can be used to modulate the frequency of laser light. The alternating
electric field is provided by an alternating voltage across parallel plate capacitors sur-
rounding an electro-optic crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Molecular Modulator A molecular modulator uses coherently vibrating (or rotating)
molecules to create a time-varying index of refraction in a molecular gas. This time-
varying index can be used to modulate the frequency of laser light. As discussed in
more detail in following sections, the coherent motion of the molecules is stimulated
by lasers with frequencies corresponding to particular molecular resonances. . . . . . 12

1.5 Index of Refraction Variation As molecules vibrate and rotate, their indices of refrac-
tion change. Semi-classically, this variation can be understood as a changing density
seen by an incident laser. The laser experiences a higher index of refraction when the
molecules are compressed or oriented so as to increase the optical density. . . . . . . . 13
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1.6 Raman and Rayleigh Scattering In Raman scattering events, the collision between the
photon and the molecule is inelastic. (a.) The photon can give energy to the molecule,
exciting the molecule and leaving with less energy and thus a lower frequency. (b.)
The photon can also gain energy from the molecule, de-exciting the molecule and
leaving with more energy and thus a higher frequency. (c.) In contrast, Rayleigh
scattering is an elastic collision. The molecule remains in the same state and the
photon retains the same frequency. In each case, the plots illustrate the frequency, ω,
of the photon both before and after the collision. . . . . . . . . . . . . . . . . . . . . 14

1.7 Rayleigh Scattering Rayleigh scattering is an elastic process that results in no change
in frequency for the photon nor change in energy for the molecule. The molecule is
excited to a virtual state by the incident photon (solid arrow), but it quickly returns to
its original state and the photon leaves (dotted arrow) without a change in frequency. . 16

1.8 Raman Scattering Raman scattering is a two-photon inelastic process that results in a
frequency shift for the photon and a change in energy for the molecule. The molecule
is first excited to a virtual state by an incident pump photon (solid green arrow). It then
transitions to a second energy state and the scattered photon (dashed arrow) is shifted
in frequency. This Raman scattering is called a Stokes transition if the molecule gains
energy and the photon is shifted to a lower frequency. It is called an anti-Stokes
transition if the molecule loses energy and the photon is shifted to a higher frequency. 16

1.9 Second-Order Raman Scattering Both Stokes and anti-Stokes photons can themselves
experience Raman scattering, and this frequency shift generates higher-order Stokes
and anti-Stokes photons. First- and second-order Raman scattering processes are
shown in this figure. In both scenarios the incident pump photon is the solid green
arrow. This photon then scatters as part of a two-photon transition, generating the
first-order Stokes (red) and anti-Stokes (blue) photons, which are represented with
dashed arrows. These first-order photons are then themselves scattered, generating
the second-order Stokes (orange) and anti-Stokes (purple) photons, illustrated with
dotted-line arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Raman System This simplified molecular Raman system serves as the basis for our
molecular modulator. States |a〉 and |b〉 are the ro-vibrational ground and excited
states, respectively, of the Raman transition. States |i〉 are higher energy electronic
ro-vibrational states. The molecular system interacts with Raman sidebands. E0 is
the incident pump beam, and E−1 is the Stokes beam. The single- and two-photon
detunings are given by δω and ∆ω, respectively. . . . . . . . . . . . . . . . . . . . . 20
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3.1 Raman System in a Cavity The addition of a cavity modifies the energy level diagram
of the Raman system. The Raman frequencies are limited by the requirement that they
be resonant with the cavity. The cavity resonances are marked with dotted purple lines.
|a〉 and |b〉 are ro-vibrational states of the molecule. ω0 and ω−1 are the frequencies of
the pump and Stokes photons, respectively, that drive the two-photon Raman process.
∆ω is the two-photon detuning, the difference between the Raman frequency (ωb−ωa)
and the frequency difference of the driving photons (ω0 − ω−1). In this case, ∆ω is
the difference between the frequency of state |b〉 and that of the cavity resonance on
which the Stokes beam is lasing. The cavity resonances, and thus ∆ω, can be changed
by adjusting the cavity length or pump laser frequency. . . . . . . . . . . . . . . . . . 37

4.1 Experiment Schematic We seed our experiment with a custom-built external cavity
diode laser (ECDL). The continuous-wave (CW) beam is modulated by an electro-
optic modulator (EOM) so that it can be used in a Pound-Drever-Hall locking scheme.
The ECDL output is on the order of 10 mW, and this seeds a ytterbium fiber amplifier
(Yb FA). The output of the Yb FA is up to 30 W of CW power in a single spatial mode
and a single frequency mode. The Yb FA output is coupled to a high-finesse cavity
(HFC) using a mode-matching lens (MML). Raman scattering in the HFC generates
a Raman Stokes beam, which also resonates in the HFC. A glass slide (GS) picks off
part of the reflection from the cavity and sends the signal to the locking circuit through
a photodiode (PD). Further details are in the main text. . . . . . . . . . . . . . . . . . 40

5.1 Cavity Resonance This basic cavity consists of two partially-reflective parallel planar
mirrors. With each encounter with a mirror, the ray is partially reflected and partially
transmitted. The incident ray is at an angle to make the individual rays easier to
distinguish. The rays travel different path lengths, and thus have different phases, φ,
when they are eventually transmitted through one of the mirrors. Depending on their
relative phases, the rays add constructively or destructively. The resonance condition
is met when all of the transmitted phases on a side, φTR on the right or φTL on the
left, match so as to add constructively and produce the maximum transmitted signal.
The significance of the phase of the beam reflected before entering the cavity, φREF ,
will be considered later; see Figure 5.5 and the surrounding discussion. . . . . . . . . 43
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5.2 Cavity Resonance Peaks The plot on the left displays the relationship between cavity
transmission and path length difference. Each time the path length difference of beams
traveling different number of round trips in the cavity is equal to an integer multiple
of the wavelength of the light, λ, the beams interfere constructively, and the cavity
transmission reaches a maximum. When the path difference is not an integer multiple
of λ, the beams interfere destructively, and less light is transmitted. The plot on the
right, a plot of cavity transmission as a function of laser frequency, yields qualitatively
similar resonance peaks. n is any positive integer, and νFSR is the free spectral range
of the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Error Signal This plot is the derivative of the plot on the right in Figure 5.2. It shows
the derivative of cavity transmission with respect to laser frequency, dT

dν
, as a function

of laser frequency, ν. This signal, known as the error signal, is useful because of its
asymmetry around resonances; the error signal indicates whether the laser has drifted
to too high or to too low of a frequency. The resonances here are the multiples of the
free spectral range of the cavity, νFSR. n is any positive integer. . . . . . . . . . . . . 46

5.4 Cavity Response to Frequency Modulation Depending on whether the frequency is
above or below a resonance, the transmission of the cavity responds either in phase or
π out of phase with a periodic modulation of the laser frequency. The arrows on the x-
axis indicate whether the modulation is decreasing (left plot) or increasing (right plot)
the laser frequency. The arrows near the resonance curve indicate the response of the
cavity transmission in two regions: when the frequency is below (shaded region) and
above (unshaded region) resonance. Below resonance, the response is in phase; when
the modulation causes a decrease (an increase) in laser frequency, there is a decrease
(an increase) in cavity transmission. Above resonance, however, the response is π
out of phase; when the modulation causes a decrease (an increase) in laser frequency,
there is an increase (a decrease) in cavity transmission. νresonant is one of the laser
frequencies that is resonant with the cavity. . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Cavity Resonance and Phase The simplified resonance diagram explains the phases of
the beams on the left side of the cavity. The reflected signal experiences no phase shift
from its reflection off of the right side of the left mirror (inside the mirror substrate)
because nmirror > nair, so it is in phase with the incident ray. On resonance, the
transmitted signal experiences a 2πm phase shift relative to the reflected signal due to
a difference in path length. (m is an integer.) The transmitted signal also experiences
a π phase shift from its reflection off of the left side of the right mirror because nair <
nmirror. Thus, the phase of the transmitted signal is 2πm + π, that is, π away from
the phase of the reflected signal. Therefore, on resonance these two signals interfere
destructively and there is a dip in the amount of light on the left side of the cavity. . . . 48
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5.6 Sideband Interference and Cavity Resonance This figure suggests how interference
between frequency sidebands and the transmitted signal can create the error signal
at the beat frequency. (It is important that we are generating the error signal from
a beat frequency. This means that the form of the error signal comes only from the
frequency drift and not from overall fluctuations in the laser intensity.) The large
central arrow in each case is the transmitted beam, while the arrows on the left and
right are the red and blue sidebands, respectively. The blue curve shows a resonance
dip of the cavity. The horizontal position of the arrow gives the frequency of the
beam. The sidebands are spaced from the transmitted beam by the EOM modulation
frequency, which is also the beat frequency. An arrow closer to resonance with the
cavity is thicker to represent its stronger signal. The direction of the arrow represents
its relative phase. An arrow pointing downward represents a π phase shift from an
arrow pointing upward. Note that the sidebands are generated with a definite phase
relative to the transmitted signal and are π out of phase with one another. (a) When
the transmitted signal is on resonance, the red and blue sidebands are of equal strength
and π out of phase with one another. The two beat signals (transmitted signal with red
sideband and transmitted signal with blue sideband) cancel, yielding zero error signal.
(b) When the transmitted signal is slightly too high in frequency, the red sideband is
closer to resonance and thus is stronger than the blue. Thus, the in-phase red beat
signal dominates, meaning that the cavity transmission response is in phase with the
modulation, and the error signal is positive. (c) When the transmitted signal is slightly
too low in frequency, the blue sideband is closer to resonance and thus is stronger than
the red. Therefore, the π-out-of-phase blue beat signal is stronger, meaning that the
cavity response is π out of phase with the modulation, and the error signal is negative.
Note the sign is different than in Figure 5.3 because we are now looking at a resonance
dip (as on the left side of Figure 5.5) rather than a transmission peak. . . . . . . . . . 50

5.7 PDH Schematic This schematic illustrates the important elements of our PDH locking
system. See the main text for a description of its function. The glowing red and
blue lines are lasers, and the thick black arrows indicated electrical signals. The call-
outs with the arrows illustrate how the EOM puts frequency sidebands on the incident
beam. To simplify the schematic, optical isolators and additional lenses are not shown.
RFG: Radio Frequency Generator, PDL: Phase Delay Line, MIX: Frequency Mixer,
LPF: Low-Pass Filter, RF: Radio Frequency Amplifier, DC: Direct Current Block,
PD: Photodiode, GS: Glass Slide, MML: Mode-Matching Lens, HFC: High-Finesse
Cavity, PZT: Piezoelectric Transducer, LBS: Lock Box for Slow Feedback, LBF:
Lock Box for Fast Feedback, ECDL: External Cavity Diode Laser, EOM: Electro-
Optic Modulator, Yb FA: Ytterbium Fiber Amplifier . . . . . . . . . . . . . . . . . . 51
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6.1 Gaussian Beam Propagation This figure illustrates the propagation of a Gaussian
beam in free space (or another uniform medium). The solid lines mark the 1

e2
size

of the Gaussian beam, w(z), and the dotted lines show the radius of curvature of the
wavefront, R(z), at selected points. The waist, w0, is the point at which the beam size
is smallest. The Rayleigh range, zR, is the range over which the beam travels before
doubling in area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Gaussian Beam in a Cavity This figure illustrates a Gaussian beam resonating in an
optical cavity consisting of two mirrors, M1 and M2. At the location of the each
mirror, z1 and z2, the radius of curvature of the beam, R(z), matches the radius of
curvature of the mirror, RM1 and RM2. The length of the cavity is L. w1 and w2 are
the beam sizes at the two mirrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Stable Cavity Configurations This figure illustrates several stable cavity configurations
that support Gaussian beam cavity modes: (a) Asymmetric Cavity, (b) Plano-Concave
Cavity, and (c) Convex-Concave Cavity. w0 indicates the cavity waist in each case.
Note that in (b) the waist is located at one of the cavity mirrors, and in (c) the waist is
located outside of the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 ABCD Matrix Simulation This figure displays a simulation of Gaussian beam prop-
agation calculated using our ABCD matrix Matlab program. The diagram on the left
shows the beam being mode-matched to the cavity using several lenses. The diagram
on the right is a detailed version of just the region around the cavity. In both diagrams,
the blue line indicates the 1

e2
beam size of a Gaussian beam. The dashed vertical lines

indicate the location of optical elements. The green dashed lines are lenses, and the
two black lines on the right of each diagram are the cavity mirrors. The curved dashed
red lines indicate the ideal cavity mode for the given cavity. In the drawing on the
right, the thin horizontal and vertical dashed lines mark the size of the cavity waist
and the location of the cavity waist. The blue dashed lines match up with the calcu-
lated beam size, and the red dashed lines match up with the ideal cavity mode. (To
make this more apparent, the calculated beam size here is intentionally different from
the cavity mode.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 Transverse Electro-Magnetic Modes This figures shows a cross-sectional view of the
lowest-order Gaussian mode (n = m = 0) as well as several higher-order Gaussian
modes. These Transverse Electro-Magnetic modes are often labeled TEMnm. This is
a plot of beam intensity, which was obtained by taking the square of the magnitude of
the electric field (Equation 6.23). A lighter color indicates a more intense beam. The
horizontal and vertical axes of each square are the spatial coordinates in the x and y
transverse directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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6.6 Finesse Figure (a) illustrates the two quantities that define finesse, F : free spectral
range, νFSR, and full-width-half-maximum cavity linewidth, ∆νcav. Figure (b) dis-
plays resonance curves for cavities of varying finesse. The cavity represented by the
topmost, red curve has a finesse of F . The second-highest, blue curve represents a
cavity with a finesse of 2F . The second-lowest, green curve represents a cavity that
has a finesse of 5F . The cavity represented by the lowest, magenta curve has a finesse
of 100F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.7 Cavity Diagram This custom-designed 75-cm-long stainless-steel vacuum chamber
houses the high-finesse cavity used in our experiment. (The drawing is to scale).
The central cavity contains the cavity mirrors and the molecular gas. Surrounding the
cavity there is an insulated 45-cm-long liquid nitrogen reservoir. (The insulation is not
shown.) The end clamps hold the end pieces in place, maintaining the vacuum, while
the end pieces themselves hold the cavity mirrors and anti-reflection-coated chamber
windows. One of the end pieces also houses the piezoelectric transducer (PZT) that
allows for slight adjustments of the cavity length. We align the cavity mirrors by
making slight adjustments to the six end-clamp-tightening bolts. This allows us to
change the pitch of the mirrors while maintaining a vacuum seal. Not shown are the
three dial indicators per end piece that record its pitch. See Appendix E for more details. 67

6.8 Rotational Level Populations This figure shows the percentages of the overall popu-
lation that are found in the lowest several rotational states for the vibrational ground
state. For both molecules at both temperatures the population percentages for ex-
cited vibrational states (not shown) are negligible. The larger energy spacing between
states in hydrogen leads to lower populations in excited states. Note how cooling to
liquid nitrogen temperatures significantly increases the populations in the lower states,
which are the states used in our experiments. . . . . . . . . . . . . . . . . . . . . . . 70
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6.9 Transition Linewidth and Temperature This figure illustrates how cooling to liquid
nitrogen temperatures narrows the linewidth of a Raman transition. Doppler and pres-
sure broadening linewidths scale as the square root of temperature. Although the
horizontal scale is arbitrary, it shows how the linewidths decrease by roughly a factor

of two (by a factor of
√

300
77
≈ 1.97) when the temperature is decreased from 300 K

to 77 K. Cmax and Hmax are the maximum effective gains for cold and hot molecules,
respectively. (These values are not necessarily the same for the two broadening mech-
anisms.) ∆νC and ∆νH are the full-width-half-maximum linewidths for cold and hot
molecules, respectively. The subscript D refers the Doppler profile, which is inhomo-
geneous and therefore Gaussian. The subscript P refers to the pressure broadening
profile, which is homogeneous and therefore Lorentzian. νR is the frequency of the
Raman transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Rotational Raman Laser This figure shows the transmitted pump power (empty blue
triangles) and the generated Stokes power (solid red diamonds) as a function of the
incident pump power. The Raman medium is molecular deuterium gas at a pressure
of 0.1 atm. The scattering transition is the |ν = 0, J = 1〉 to |ν = 0, J = 3〉 rotational
transition, which has a transition frequency of 8.9 THz. The pump beam wavelength is
1555 nm, and the Stokes beam wavelength is 1630 nm. The Raman lasing threshold,
the incident pump power at which Raman lasing begins to occur, is about 1 W. This
is evidenced by the plateauing of the transmitted pump power. After this point, any
additional incident pump power is being converted to Stokes power. The dotted line
is a linear fit of the Stokes data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 Four-Wave Mixing On the left is an optical spectrum analyzer scan displaying the
anti-Stokes, pump, and Stokes beams. The anti-Stokes and Stokes beams are 89.6
THz, the modulation frequency, away from the pump beam. The figure on the right
illustrates the four-wave mixing process that generates the anti-Stokes beam. The
solid red arrows represent the pump beam at 1064 nm. As the pump beam resonates
with the cavity, the Stokes beam builds up from noise from Raman scattering off of
the |v = 0, J = 0〉 to |v = 1, J = 0〉 vibrational transition in molecular deuterium.
The Stokes beam, at 1560 nm and represented by the dashed blue arrow, also resonates
with the cavity. The intense pump and Stokes beams build up the molecular coherence
between the states. This coherence mixes with the pump beam to generate an anti-
Stokes beam through four-wave mixing, a χ(3) nonlinear process. The anti-Stokes
beam, at 807 nm and represented by the dotted green arrow, is not resonant with the
cavity, and thus is generated in a single pass through the system. . . . . . . . . . . . . 79



xv

Figure Page

7.3 Powers of the Generated Coherent Spectrum These figures show the transmitted pow-
ers of the beams shown in the spectrum of Figure 7.2 as a function of the incident
pump power for two different pressures. The solid red circles mark the transmitted
pump power. Notice the characteristic plateauing of the transmitted pump power, as is
characteristic of Raman lasing. (See also Figure 7.1.) The solid green triangles mark
the transmitted Stokes power, and the empty black diamonds mark the transmitted
anti-Stokes power. Note that the vertical scale is different for the anti-Stokes beam.
The right vertical axis marks the anti-Stokes power in µW. Also notice that the vertical
scale is different for the two plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 Quantum Path Interference The spectrum, consisting of the pump (ωp), the Stokes
(ωS), and the anti-Stokes (ωa) beams, is transmitted through the cavity and is spatially
separated by a prism (P). The Stokes beam is manipulated by a glass slide (GS), which
can rotate to change the path length and thus the phase of the beam. Individual mirrors
then reflect the three beams back to the prism. The recombined beams are focused to a
common focus by an achromatic doublet lens (AD). The beams are focused onto a 10-
µm-thick Beta-Barium-Borate crystal (BBO). As shown in the inset, two second-order
χ(2) processes in the nonlinear crystal lead to the generation of 532 nm light. Two
pump photons can create 532 nm light through second-harmonic generation (SHG),
or one anti-Stokes photon and one Stokes photon can create 532 nm light through
sum-frequency generation (SFG). Depending on the relative phases, the 532 nm light
generated from these two processes can add constructively or destructively. After
the BBO crystal, all four beams are sent through a collimating lens (CL) and then
another prism (P) to spatially separate them again. The 532 nm light is then further
isolated using a narrowband interference filter (IF) and detected using a single-photon-
counting module (SPCM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.5 Mutual Coherence Measurement This figure shows the number of 532 nm photons
detected per second by the photon counter as a function of introduced phase change
of the Stokes beam. The sinusoidal pattern comes from the interference of the two
quantum paths that generate 532 nm light. (See Figure 7.4.) The large visibility of the
fringes suggest significant interference and thus excellent mutual phase coherence of
the beams. The red diamonds mark experimental data points, and the green curve is a
numerical simulation based on experimental parameters. The contrast of the simulated
curve is calculated without any adjustable parameters. . . . . . . . . . . . . . . . . . 82
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7.6 Inferred Synthesized Temporal Waveform This figure shows the intensity of an inferred
synthesized waveform as a function of time. This assumes that the three spectral
components of Figure 7.2 are combined while phase-locked and of equal amplitude.
A near single-cycle optical waveform with a repetition period of 11 femtoseconds is
formed. t = 0 fs is chosen to be one of the maxima of the pulse train. Note that
because the absolute frequencies of the component beams are not integer multiples
of their frequency difference (the modulation frequency), the carrier-envelope phase
varies with time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.7 Multiple-Order Rotational Raman Scattering - 0.01 atm D2 This figure shows an opti-
cal spectrum analyzer scan of the spectral components generated by stimulated Raman
scattering in our high-finesse cavity with 20 W incident pump power. The scattering
occurs on the |v = 0, J = 0〉 to |v = 0, J = 2〉 rotational transition in molecular
deuterium. The transition frequency, and thus the spacing between successive spec-
tral components, is 5.4 THz. The spectrum contains the pump, two anti-Stokes (AS1,
AS2) and five Stokes (S1-S5) beams. Note that the vertical scale is logarithmic. . . . . 86

7.8 Power Curves - Rotational Raman Scattering - 0.01 atm D2 This figure shows power
curves for the rotational spectral components shown in Figure 7.7. Powers are dis-
played for the pump beam, five orders of Stokes beams (S1-S5), and one anti-Stokes
beam (AS1) as a function of incident pump power. The second-order anti-Stokes
beam was too weak to record accurate power measurements. Note that due to their
low powers, the fifth Stokes beam and first anti-Stokes powers are multiplied by 100
to improve their visibility. The 20% error bars on each measurement are not shown to
increase clarity. At the maximum incident pump power, the combined power of the
Raman spectral components is over 50 mW. . . . . . . . . . . . . . . . . . . . . . . . 88

7.9 Multiple-Order Rotational Raman Scattering - 0.1 atm D2 This figure shows an optical
spectrum analyzer scan of the spectral components generated by stimulated Raman
scattering in our high-finesse cavity with 9 W of incident pump power. The scattering
occurs on both the |v = 0, J = 0〉 to |v = 0, J = 2〉 and the |v = 0, J = 1〉 to |v =
0, J = 3〉 rotational transitions in molecular deuterium. The transition frequencies of
these transitions are 5.4 THz and 8.9 THz, respectively. The spectrum contains the
pump, one anti-Stokes (AS1) and five Stokes (S1-S5) beams from the |v = 0, J = 0〉
to |v = 0, J = 2〉 transition. It also contains the first-order Stokes beam from the
|v = 0, J = 1〉 to |v = 0, J = 3〉 transition. This Stokes beam, labeled P′, becomes
the pump beam for a new spectrum of |v = 0, J = 0〉 to |v = 0, J = 2〉 scattering.
This second spectrum, whose components are labeled in bold, blue, and primed labels,
contains two anti-Stokes beams (AS1′, AS2′) and two Stokes beams (S1′, S2′). Note
that the vertical scale is logarithmic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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7.10 Frequency Variation with Cascade Scattering This figure illustrates the source of fre-
quency variation with cascade Raman scattering. (a) This is a simplified view of first-
and second-order Raman scattering from Figure 1.9. |a〉 and |b〉 are the molecular ro-
vibrational states. The solid green arrow is the pump beam. The dashed red arrows are
the first-order Stokes beam, and the dotted orange arrow is the second-order Stokes
beam. (b) This is a more detailed view of the lower half of diagram (a). It includes
the cavity resonances for the first- and second-order Stokes beams (red and orange
lines, respectively). Because the different orders of Stokes beams have different fre-
quencies, their cavity resonances are different. This means that the frequencies of the
two-photon Raman transitions for the first-order (ωR1) and second-order (ωR2) beams
are different. Thus, the frequency separation between adjacent Stokes beams is variable. 90

7.11 Possible Observation of Forbidden Transition This figure shows an optical spectrum
analyzer scan of the spectral components generated by stimulated Raman scattering
in our high-finesse cavity. Among the complex spectrum is a beam, marked with a red
F, that is located around 1.8 THz from the pump beam. This corresponds with Raman
scattering off of the |v = 0, J = 0〉 to |v = 0, J = 1〉 rotational transition in molecular
deuterium. This transition is dipole forbidden for a symmetric homonuclear molecule
like D2. Note that the vertical scale is logarithmic. . . . . . . . . . . . . . . . . . . . 92

8.1 Broadband Ro-Vibrational Spectrum This figure shows the ro-vibrational spectrum
generated through stimulated Raman scattering in a high-finesse cavity. The mirrors
have high reflectivity at wavelengths around 1010 - 1150 nm and around 1430 - 1620
nm. The Raman medium is molecular deuterium gas at a pressure of 0.1 atm. The
spectrum is obtained by locking a single 1064-nm-wavelength pump laser to the cav-
ity. The scattering transitions are the |v = 0, J = 0〉 to |v = 1, J = 0〉 vibrational
transition (89.6 THz) and the |v = 0, J = 0〉 to |v = 0, J = 2〉 rotational transition
(5.4 THz). The 800 - 1650 nm region is recorded on an optical spectrum analyzer in
a single scan, and the mid-infrared beams are measured using a PbSe photodiode. In
the spectrum analyzer scan, the change in the background level between 800 - 900 nm
and the jump in the background level at 1000 nm are instrument artifacts. The insets
show optical heterodyne linewidth measurements of the full-width-half-maximum fre-
quency linewidth for the 1064 nm and 1605 nm beams. See Table 8.1 for powers of
each rotational group: A-S anti-Stokes, P pump, S Stokes, S2 second-order Stokes. . . 95
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8.2 Ro-Vibrational Spectrum Spatial Profiles This figure displays images of the spatial
profiles of many of the spectral components from the broadband Raman spectrum.
The spectrum transmitted through one of our cavity mirrors is spatially dispersed by
an SF11 prism. The top image captures all of the beams in the spectrum that we can
image. For the second row of images, the beams are allowed to propagate farther
to allow for further spatial separation. Thus, the individual rotational sidebands that
make up the groups in the first image can be resolved. The bottom row displays beam
profiles as captured by a CCD-based beam profiler. All beams have a nearly-perfectly
Gaussian spatial profile from being generated in the TEM00 mode of the high-finesse
cavity. Note that the Gaussian profiles in the images are somewhat distorted by the
prism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3 Ro-Vibrational Spectrum - Multiple Rotational Transitions This figure displays part
of the rich ro-vibrational spectrum produced through stimulated Raman scattering in
a high-finesse cavity. The spectrum is produced through simultaneous scattering off
of three rotational transitions and one vibrational transition. The spectrum labeled in
black was produced through rotational scattering exclusively on the |v = 0, J = 0〉 to
|v = 0, J = 2〉 transition. The primed spectrum labeled in boldface blue was produced
through rotational scattering on both the |v = 0, J = 1〉 to |v = 0, J = 3〉 and the
|v = 0, J = 0〉 to |v = 0, J = 2〉 transitions. The double-primed spectrum labeled in
green italics was produced through rotational scattering on both the |v = 0, J = 2〉 to
|v = 0, J = 4〉 and the |v = 0, J = 0〉 to |v = 0, J = 2〉 transitions. The left section of
the figure around the vibrational anti-Stokes beam was produced through four-wave
mixing. The sidebands are labeled with the label of the beam that mixed with the
coherence to generate them and a subscript v to indicate that they were generated
through vibrational coherence. Not shown are sidebands near the first- and second-
order vibrational Stokes beams produced through four-wave mixing. In total, this
Raman spectrum contains around 30 ro-vibrational spectral components. Note that
the top of the pump peak does not fit on the vertical scale. The rise in the background
level between 800 and 850 nm is an instrument artifact. . . . . . . . . . . . . . . . . . 99

8.4 Calculated Quasi-Periodic Pulse Train This figure shows the pulse train that would be
generated if the spectrum of Figure 8.1 were adjusted so that the spectral components
all have equal amplitudes and aligned phases. Because there is not a rational rela-
tionship between the pump frequency and the vibrational and rotational modulation
frequencies, the synthesized temporal waveform is quasi-periodic. The insets show
details of this calculated pulse train, including the central sub-optical-cycle pulse that
has a sub-femtosecond duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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9.1 Mixing Experiment Overview (a) We drive hydrogen molecules to a coherent rota-
tional state using intense pump and Stokes beams inside a high-finesse cavity. A third
laser beam at a wavelength of 785 nm passes through the system and is modulated
by the coherently rotating molecules through four-wave mixing. This generates side-
bands at 823 nm and 750 nm, 17.6 THz from the mixing laser frequency. At the
bottom of the figure, plots of intensity as a function of wavelength display the spectral
components at the input and the output of the cavity, highlighting the effects of mod-
ulation. (b) This figure shows the relevant energy diagram for the process described
in (a). It is very similar to the four-wave mixing process shown in Figure 7.2, but it
is an independent mixing beam (λmixing), rather than the pump beam, that mixes with
the coherence generated by the pump (λpump) and Stokes (λStokes) beams to produce
a sideband (λsideband). νmod is the modulation frequency, which is 17.6 THz. The
σ− polarization of the mixing beam preferentially produces the frequency up-shifted
sideband at a wavelength of 750 nm. Not shown is the opposite case, in which a σ+

polarization preferentially generates a frequency down-shifted 823 nm beam. . . . . . 104

9.2 Pump and Stokes Output These plots display the pump and the Stokes output powers
as functions of incident pump power. The Raman lasing medium is molecular hydro-
gen with a gas pressure of around 1

3
atm at room temperature. The Raman scattering

occurs on the |v = 0, J = 1〉 to |v = 0, J = 3〉 rotational transition. The roughly
constant pump output and the increasing Stokes output are characteristic of the Raman
lasing process used to generate the Stokes beam. (See Figures 7.1 and 7.3 for other
examples.) The points are experimental data and the solid lines are theoretical best fit
curves based on the Raman lasing model developed by the Carlsten group. (See main
text.) Note that the vertical scales in the two plots are different. . . . . . . . . . . . . . 106
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9.3 Mixing Experiment Schematic This figure shows the experimental schematic for the
mixing experiment. Much of it is the same as the basic schematic of Figure 4.1. We
seed our experiment with a custom-built external cavity diode laser (ECDL). The
continuous-wave (CW) beam is modulated by an electro-optic modulator (EOM) so
that it can be used in a Pound-Drever-Hall locking scheme. The ECDL output is on
the order of 10 mW, and this seeds a ytterbium fiber amplifier (Yb FA). The output of
the Yb FA is up to 30 W of CW power in a single spatial mode and a single frequency
mode. The Yb FA output is circularly polarized by a quarter-wave plate (λ/4) and
coupled to a high-finesse cavity (HFC) using a mode-matching lens (MML). Raman
scattering in the HFC generates a Raman Stokes beam, which also resonates in the
HFC. A glass slide (GS) picks off part of the reflection from the cavity and sends
the signal to the locking circuit through a photodiode (PD). An independent mixing
beam with a wavelength of 785 nm is generated by a separate ECDL and amplified by
a semiconductor tapered amplifier (TA). The amplified beam is overlapped with the
pump beam using a half-wave plate (λ/2) and a polarizing beam splitter (PBS). The
mixing beam travels through the cavity and mixes with the coherence from the pump
and Stokes beams to generate frequency sidebands through four-wave mixing. The
mixing beam is not resonant with the cavity so the modulation occurs in a single pass
through the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.4 Mixing Experiment Conversion Efficiency This figure shows the conversion efficiency
of the 785 nm mixing beam to the 750 nm sideband as a function of the input pump
beam power. We define conversion efficiency to 750 nm light as the ratio of the trans-
mitted sideband power (P750

out) to the incident mixing beam power (P785
in ). The conver-

sion to the frequency down-shifted 823 nm sideband, which occurs simultaneously, is
about 1

3
as efficient. This is due to the elliptical polarization of the mixing beam. The

hydrogen pressure in the cavity is 0.33 atm for this experiment. . . . . . . . . . . . . 109

9.5 Mixing Conversion Efficiency as a Function of Wavelength This figure shows the pre-
dicted conversion efficiency of our molecular modulator as a function of the wave-
length of the mixing beam. The conversion efficiency is defined as the ratio of the
transmitted power of the frequency up-shifted sideband (Psidetrans) over the incident
power of the mixing beam (Pmixinc ). The solid red line is the efficiency with a hydro-
gen pressure of 0.33 atm, and the dotted green line is the efficiency with a hydrogen
pressure of 0.08 atm. The conversion efficiency increases with decreasing mixing
wavelength for most of the optical region of the spectrum. At short wavelengths,
however, phase-mismatch between the sideband and the mixing beam starts to play
a role, and that creates a sharp drop-off in the efficiency. The vertical line marks the
mixing beam wavelength used in our experiment. . . . . . . . . . . . . . . . . . . . . 110
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10.1 Terahertz Generation through Four-Wave Mixing This figure illustrates a four-wave
mixing process that could be used to produce tunable THz radiation using molecu-
lar modulation. Intense pump (Ep) and Stokes (ES) beams drive a Raman transition
and build up coherence between molecular ro-vibrational states |a〉 and |b〉. Then
an independent mixing beam (Em) mixes with the coherence to generate a frequency
down-shifted sideband (ETHz). The key is that Em is chosen to be at a frequency very
close to the Raman transition frequency. With an appropriate choice of mixing fre-
quency, the generated sideband, ETHz, can have a frequency in the THz range. This
THz frequency is tuned across the THz region by tuning the mixing beam frequency. . 113

10.2 Terahertz Generation Schematics This figure displays the two schemes we propose
for generating coherent THz radiation. In both schematics, the solid gray rectangles
are mirrors, and the pairs of gray lines are partially transmissive mirrors used to com-
bine beams. (a) The first scheme is a pulsed THz source. Q-switched pump and
Stokes lasers are loosely focused on a Raman cell to drive molecular coherence in
the deuterium inside. An independent Q-switched mixing laser then passes through
the cell and is modulated by the coherence, producing coherent THz pulses. (b) This
second scheme is a CW THz source. CW pump and Stokes beams are coupled to a
deuterium-filled high-finesse cavity. The intense intracavity fields of these resonant
beams drive the molecules to a coherent state. A non-resonant CW mixing beam then
passes through the cavity and is modulated in a single pass, generating coherent CW
THz radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.3 Terahertz Source: Calculated Mixing Efficiency This figure shows the simulated con-
version efficiency from the mixing beam to the generated THz beam for a pulsed (a)
and a CW (b) THz source based on molecular modulation. The calculations are based
on state-of-the-art, yet experimentally achievable, parameters. Details about the pa-
rameters can be found in the main text. Note that the vertical scales on the two plots
are different. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.4 Terahertz Beam Profile This figure displays a simulated 1 THz beam generated by one
of the molecular modulation schemes described above. (a) This is a two-dimensional,
false-color intensity plot for the generated THz beam inside of the modulator. Note
that the relative horizontal scale has been greatly expanded to show details. The prop-
agation direction is upwards, and the output of the modulator is at the top of the image.
(b) This is an intensity profile (solid red line) of one of the transverse directions of the
THz beam at the output of the modulator. Due to the significant divergence of the THz
wave, the output beam is not exactly Gaussian. For comparison, a Gaussian intensity
profile with the same width is also plotted (dashed blue line). . . . . . . . . . . . . . . 119
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11.1 Independent Stokes Beam: Experimental Schematic This figure illustrates the ex-
perimental arrangement for our molecular modulation experiments with independent
pump and Stokes beams. It is very similar to the mixing beam schematic seen in Fig-
ure 9.3, but now along with the pump laser, amplifier, and optics, there is an analogous
arrangement for the independent Stokes laser. Both lasers come from extended cav-
ity diode lasers (ECDLs), and they are modulated for frequency locking purposes by
electro-optic modulators (EOMs). They are then amplified by fiber amplifiers (FAs),
ytterbium-doped for the 1064 nm pump laser, and erbium-doped for the 1560 nm
Stokes laser. The two amplified beams are simultaneously coupled to the high-finesse
cavity (HFC) by mode-matching lenses (MMLs). The glass slides (GSs) pick off part
of the beams, and the photodiodes (PDs) monitor the reflected signals from the cavity
for locking purposes. In this case, the slow feedback of each locking circuit feeds
back to the piezoelectric transducer (PZT) in the associated ECDL, rather than that in
the HFC. We found that the two locks interfered with one another more when one was
feeding back to the HFC mirror PZT and one was feeding back to the ECDL PZT. (See
Section 5.2 for more details on the locking circuit.) Once the independent pump and
Stokes beams establish coherence by driving molecular transitions in the deuterium in
the cavity, the mixing ECDL produces a beam that is amplified by a tapered amplifier
(TA) and then overlapped with the other beams using a half-wave plate (λ/2) and a
polarizing beam splitter (PBS). The beam is modulated in a single pass through the
HFC. The modulated mixing beam is picked off by the GS, spatially dispersed using
a prism, and sent to an optical detector. . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.2 Independent Stokes Beam Extrapolation Estimate This figure displays the Raman las-
ing data of one of the plots of Figure 7.3. The red dotted line has been added as a
rough extrapolation of the pump power data at incident powers lower than the Raman
lasing threshold. This extrapolation provides a rough estimate of the behavior of the
pump laser in the absence of Raman lasing. It suggests that there would be about 140
mW of pump light transmitted for 16 W of incident pump light. Assuming similar
behavior for an independent Stokes beam, this would lead to an improvement of about
a factor of 6.25 in the mixing efficiency. See text for details. . . . . . . . . . . . . . . 124
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11.3 Two-Photon Detuning and Anti-Stokes Generation This figure illustrates how chang-
ing the two-photon detuning, ∆ω, affects the amount of anti-Stokes generation. In
each of the four images, the Stokes laser is tuned to a different cavity resonance (dotted
purple line). The frequency difference between the cavity resonance and the Raman
resonance determines ∆ω. The Raman resonance is the frequency difference between
the two ro-vibrational levels (solid black lines). When the detuning is small, the two-
photon transition is close to the Raman resonance, and thus there is more anti-Stokes
generation. The thickness of the anti-Stokes (green and dashed) arrow represents its
relative power, with thicker arrows being higher power. In order to change ∆ω, the
frequency of the Stokes beam (blue arrow) is changed to match cavity resonances
while the frequency of the pump beam (red arrow) remains constant. . . . . . . . . . . 125

11.4 Two-Photon Resonance This figure shows the connection between the two-photon
Raman resonance and the generation of anti-Stokes light. The independent pump and
Stokes beams drive a molecular coherence that mixes with the pump beam to generate
an anti-Stokes beam through four-wave mixing. By changing the frequency of the
Stokes beam, we change the two-photon detuning from the Raman resonance, ∆ω.
When the two-photon detuning is small, the coherence is high, and there is more anti-
Stokes generation. By tuning across the Raman resonance, we generate a resonance
curve. A detuning of zero corresponds to the frequency separation of the pump and the
Stokes beams being exactly equal to the frequency of the Raman transition. Each data
point in this experimental plot corresponds to a tuning configuration similar to those
illustrated in Figure 11.3. The full-width-half-maximum linewidth of a few hundred
MHz is roughly what we expect from the Doppler and pressure broadening linewidth
contributions discussed in Section 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xxiv

Figure Page

11.5 Vibrational Mixing Experiment Overview This independent mixing beam modulation
experiment is similar to the one described in Figure 9.1. (a) Inside a high-finesse cav-
ity, we drive deuterium molecules to a coherent vibrational state using intense pump
and Stokes beams. A third laser beam at a wavelength of 785 nm passes through the
system and is modulated by the coherently vibrating molecules through four-wave
mixing. This generates sidebands at 1026 nm and 636 nm, 89.6 THz from the mix-
ing laser frequency. At the bottom of the figure, plots of intensity as a function of
wavelength display the spectral components at the input and the output of the cav-
ity, highlighting the effects of modulation. (b) This figure shows the relevant energy
diagram for the process described in (a). It is very similar to the four-wave mixing
process shown in Figure 7.2, but it is an independent mixing beam (λmixing), rather
than the pump beam, that mixes with the coherence generated by the pump (λpump)
and Stokes (λStokes) beams to produce a sideband (λsideband). νmod is the modula-
tion frequency, which is 89.6 THz. We show only the generation of the frequency
up-shifted sideband here, but the light is linearly polarized, so there is no preferential
generation of one sideband over another. . . . . . . . . . . . . . . . . . . . . . . . . . 129
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11.6 Vibrational Mixing Experiment Schematic This figure shows a schematic for our vi-
brational mixing experiment. It is very similar to the rotational mixing experiment
illustrated in Figure 9.3. As with our other experiments, the pump laser comes from
a custom-built external cavity diode laser (ECDL) at a wavelength of 1064 nm. The
continuous-wave (CW) beam is modulated by an electro-optic modulator (EOM) so
that it can be used in a Pound-Drever-Hall locking scheme. The ECDL output is on
the order of 10 mW, and this seeds a ytterbium fiber amplifier (Yb FA). The output of
the Yb FA is up to 30 W of CW power in a single spatial mode and a single frequency
mode. The Yb FA output is coupled to a high-finesse cavity (HFC) using a mode-
matching lens (MML). Raman scattering in the HFC generates a Raman Stokes beam
at a wavelength of 1560 nm, which also resonates in the HFC. The HFC and lock-
ing electronics are the same as those in Chapter 9. A glass slide (GS) picks off part
of the reflection from the cavity and sends the signal to the locking circuit through a
photodiode (PD). An independent mixing beam with a wavelength of 785 nm is gen-
erated by a separate ECDL, and amplified by a semiconductor tapered amplifier (TA).
The amplified beam is modulated at a frequency of 500 Hz using and optical chopper
(OC). This chopper, in conjunction with a lock-in amplifier, aids in the detection of
the weak sideband in the presence of scatter from the much more powerful pump,
Stokes, and mixing beams. The mixing beam travels through the cavity and mixes
with the coherence from the pump and Stokes beams to generate frequency sidebands
through four-wave mixing. The mixing beam is not resonant with the cavity so the
modulation occurs in a single pass through the system. The chopper-modulated mix-
ing beam and frequency up-shifted sideband are separated from the transmitted pump
and Stokes light (and the frequency down-shifted sideband) using a low-pass dichroic
mirror (DM). The mixing beam and the frequency up-shifted sideband are then spa-
tially separated using a dispersive grating (DG), and the mixing beam is blocked using
a beam block (BB). The chopper-modulated frequency up-shifted sideband is detected
using a PD and a lock-in amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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11.7 Frequency Comb Modulation This figure illustrates the effect of our molecular mod-
ulator on a titanium-sapphire frequency comb. The top plot shows a typical output
spectrum from a frequency comb. This would be the input to our modulator. (There
are too many closely-spaced spectral components to show them individually here.
We instead use a single curve to represent the envelope that contains the hundreds of
thousands of individual spectral components.) In the second highest plot, we show
the output of our modulator, assuming that our modulator adds a single Stokes and
anti-Stokes sideband to each spectral component with 60% conversion efficiency. The
modulation frequency is taken to be 89.6 THz, which is from scattering off of the
|v = 0, J = 0〉 to |v = 1, J = 0〉 vibrational transition in molecular deuterium.
The third and fourth highest plots include second- and third-order sidebands, again
assuming a conversion efficiency of 60%. . . . . . . . . . . . . . . . . . . . . . . . . 133

11.8 Arbitrary Optical Waveform Generation This figure illustrates the potential of a broad-
band spectrum for arbitrary optical waveform generation. With its broadband capa-
bilities, a molecular modulator would be able to modulate the already broad output
of a titanium-sapphire laser. The resulting spectrum could contain a few million CW
Fourier components that span the entire optical region of the spectrum. With appro-
priate phase and amplitude control, such a broad, coherent spectrum could be used to
Fourier synthesize arbitrary optical waveforms with sub-femtosecond resolution. . . . 133

E.1 Cavity Diagram This custom-designed 75-cm-long stainless-steel vacuum chamber
houses the high-finesse cavity used in our experiment. (The drawing is to scale).
The central cavity contains the cavity mirrors and the molecular gas. Surrounding the
cavity there is an insulated 45-cm-long liquid nitrogen reservoir. (The insulation is not
shown.) The end clamps hold the end pieces in place, maintaining the vacuum, while
the end pieces themselves hold the cavity mirrors and anti-reflection-coated chamber
windows. One of the end pieces also houses the piezoelectric transducer (PZT) that
allows for slight adjustments of the cavity length. We align the cavity mirrors by
making slight adjustments to the six end-clamp-tightening bolts. This allows us to
change the pitch of the mirrors while maintaining a vacuum seal. Not shown are the
three dial indicators per end piece that record its pitch. . . . . . . . . . . . . . . . . . 203

E.2 Full View This view shows all of the pieces to the cavity and chamber. The table below
lists all parts seen in the figure at the bottom of the page. . . . . . . . . . . . . . . . . 204

E.3 PZT Side Detail This figure illustrates the PZT side of the cavity and chamber, both
without and with labels. The text below explains the labels. . . . . . . . . . . . . . . 205
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E.4 PZT Back Side Detail This figure illustrates the reverse of the PZT side of the cavity
and chamber. This view shows where some of dial indicators are held in the inner
clamp by set screws (A) and also some of the indentations in the outer clamp on
which the dial indicators rest (B). Also visible are the slots in the back of the inner
end clamp (C). These slots hold the nuts so that the end-clamp-tightening bolts can
be easily tightened from the front of the outer end clamp. This diagram angle also
gives a better view of the retaining ring (D) that holds the cavity mirror (E) in place by
screwing into the threaded inner surface of the mirror holder (F). Barely visible is a
small hole (G) that connects the main chamber with the small volume of empty space
between the mirror and the chamber window. This is to help ensure that this part of
the chamber is properly evacuated by the vacuum pump. . . . . . . . . . . . . . . . . 206

E.5 Non-PZT Side Detail This figure illustrates the side of the cavity and chamber opposite
the one shown in Figure E.3. Almost all features are identical. The main difference
is that there is no PZT stack to adjust this mirror. The mirror holder is included as a
part of the end piece (A). Also, instead of a PZT feedthrough, this side has the gas
input (B). This is the connection (a KF16 vacuum flange) where the vacuum pump is
connected to evacuate the chamber. Through this same connection, the molecular gas
is added. Not shown is the manometer used to gauge the gas pressure in the cavity.
The figure below shows the reverse view of this side of the cavity. Again visible is
the end piece that includes the mirror holder (C), including the small hole (D) for
evacuating the area between the window and the mirror, as mentioned in Figure E.4. . 207

E.6 Non-PZT Back Side Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
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Abstract

Continuous-Wave Light Modulation Using Stimulated Raman Scattering
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At the University of Wisconsin - Madison

This thesis focuses on the development of a device that modulates light at molecular frequen-

cies. The purpose of this molecular modulator is to generate a broad, continuous-wave laser spec-

trum. Our novel approach is based on stimulated Raman scattering in a high-finesse cavity. Using

high-intensity intracavity fields, we drive ro-vibrational Raman transitions in a low-density gas of

molecular deuterium (or hydrogen). This builds up a molecular coherence between ro-vibrational

energy levels. This molecular coherence is then used to modulate a laser beam, generating side-

bands that are spaced from the original frequency by multiples of the Raman frequencies, which

can exceed 100 THz. The sidebands form a broad, coherent spectrum. Such a spectrum has nu-

merous potential applications including ultrashort pulse generation, precision spectroscopy, and

coherent control.

To our knowledge, the spectra produced by our molecular modulator are the broadest coher-

ent spectra ever produced in the continuous-wave domain. This thesis describes the generation

of a spectrum that has over fifteen spectral components that cover nearly two octaves of optical

bandwidth, a wavelength range from 800 nm to 3100 nm. In contrast to molecular modulation

methods that are based on pulsed lasers, our continuous-wave approach ensures that each spectral

component has a narrow frequency linewidth. In addition to the generation of broad spectra, this

thesis describes work that demonstrates the broadband capabilities of molecular modulation and

computational work that suggests promising applications for our modulator.
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Introduction

Imagine that you want to photograph something that is moving quickly, like the swing of a

baseball bat or a speeding car. If your shutter speed is too slow, the moving object in your photo

will be blurred. In order to capture a crisp image of the action, you need your shutter to move

quickly enough that your subject does not have time to noticeably move while the shutter is open.

In other words, you need the duration of the pulse of light that hits the film (or the charge-coupled

device sensor) to be shorter than the timescale of action that you want to capture.

More generally, in order to optically examine a transient phenomenon, you need a pulse of light

with duration shorter than the timescale of the action. This principle holds on timescales that are

well beyond the capabilities of even the fastest camera shutters. This thesis focuses on the devel-

opment of a device that could permit the exploration of action that happens on sub-femtosecond

timescales. Recall that a femtosecond is 10−15 seconds, or one millionth of a billionth of a second.

The ratio of one femtosecond to one second is roughly the same as the ratio of seven and a half

minutes to the age of the universe. To give some perspective, here are a few processes that last on

the order of a femtosecond: the classical Kepler orbital period of an electron around a nucleus, the

oscillation period for visible light, and the reaction time of some of the fastest chemical reactions

[1].

Because a femtosecond is much faster than any shutter, exploration of such phenomena on

sub-femtosecond timescales requires alternative methods of generating ultrashort pulses of light

(or, more generally, electromagnetic radiation). Several methods of creating ultrashort pulses

have been developed including mode-locked lasers [2], high harmonic generation [3], free electron

lasers [4], optical parametric amplifiers [5, 6], non-linear fibers [7, 8, 9], and molecular modulation

[10, 11].

This thesis focuses on this last approach, which so far has been able to produce the shortest

pulses in the optical region of the spectrum. Molecular modulation is the shifting of the frequency

of light through laser-molecule interactions. In these interactions, the molecules can gain (or lose)
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quanta of energy. The laser photons, which lose (or gain) this energy in the exchange, thus ex-

perience a corresponding downward (or upward) shift in frequency. Because it stems from the

energy quanta of the molecules, the magnitude of this frequency shift is determined by the molec-

ular properties. The original frequency and the shifted frequencies, which are called sidebands,

together form a spectrum of lasers.

A broad, coherent generated spectrum is the key to ultrashort pulse generation through molec-

ular modulation. Coherent here means that all of the components of the spectrum have a definite

phase relationship with one another. Suppose the phases of the components begin in such a way

that all of the different frequencies in the spectrum have their maxima aligned. At this time, the

components add constructively, and the overall intensity of the light is high. However, because all

of the components oscillate at different frequencies, the peaks will not stay aligned. This means

that the components start to add destructively, and the overall intensity of the light is lower. After a

number of oscillations, the maxima will be aligned (or nearly aligned) again. Thus, there is again

constructive interference and higher intensity. This cycle repeats, forming a temporal pattern of

intensity maxima and minima. With enough frequencies, the destructive interference dominates

for most of the period, yielding long intervals of darkness interrupted by brief flashes of light from

constructive interference. These brief flashes are the ultrashort pulses. See Figure 0.1.

The ultrashort pulses generated by broadband spectra allow the exploration of ultrafast phe-

nomena [1], but that is not the limit of the utility of broadband spectra. In addition, broad-

band sources have applications in precision spectroscopy [12] and quantum control of atoms and

molecules [13, 14, 15]. Each frequency in a spectrum is a unique laser, so a broadband spectrum

serves as a versatile spectroscopy toolbox. This wide selection of frequencies also makes a broad-

band source ideal for coherently probing a wide range of electronic, rotational, and vibrational

excitations in molecules. This is normally challenging, as these excitations vary in energy by or-

ders of magnitude. If the frequencies of the components are precisely determined, a broadband

spectrum could also allow for the construction of precise optical clocks in different regions of the

spectrum [16]. The spectrum could also serve as a broad absolute frequency reference with com-

ponents covering much of the optical region [17]. Furthermore, each frequency in the spectrum
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Figure 0.1 Pulse Generation This figure illustrates pulse generation with a spectrum containing
only three frequencies. The violet, green, and red electric fields interfere to create the pulse

structure of the total black field, a superposition of the other three. The vertical blue dotted lines
mark the bright pulses, times of constructive interference. In between the bright pulses,

destructive interference causes the total field to be smaller in magnitude, and the light is dimmer.

is like a Fourier component, so with appropriate phase and amplitude control, one can combine

the pulses to form arbitrary optical waveforms, like with an electronic radio-frequency synthesizer,

but at optical frequencies. These Fourier synthesized waveforms can be used to probe and also

to manipulate processes that happen on ultrashort timescales [18, 19]. Such an arbitrary optical

waveform generator would be a powerful tool in ultrafast science.

This thesis describes important steps towards using molecular modulation to produce a broad-

band coherent spectrum suitable for use in an arbitrary optical waveform generator.

Chapter 1 provides an introduction to the concept of light modulation. We discuss the process

of sideband generation through phase modulation, and then we examine different methods of light

modulation with a special emphasis on molecular modulation.

Chapter 2 explores molecular modulation with more mathematical rigor. The Hamiltonian that

governs the molecular interaction is presented along with the relevant eigenstates and eigenvalues.

We also discuss the propagation equation that describes the generation of sidebands in Raman

media.
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Chapter 3 describes relevant previous work in the field of molecular modulation. We review

the first proposals for molecular modulation and early progress in the field with pulsed lasers. We

then discuss experiments with continuous-wave molecular modulation and recent developments in

the field.

Chapter 4 is a brief overview of the experimental arrangement for our molecular modulator.

Chapter 5 provides details on a particular aspect of our experiment: resonance and laser lock-

ing. We begin with an overview of the concept of resonance and then discuss the generation of

an error signal. We close with a discussion of the specifics of the locking system used in our

experiment.

Chapter 6 discusses another aspect of our experiment: optical cavities. We discuss Gaussian

beam propagation and mode-matching Gaussian beams to optical cavities. We then discuss the

optical cavity used in our experiments, including a discussion of the effects of cooling it to liquid

nitrogen temperatures.

Chapter 7 is an overview of previous progress from our research group. We begin with an

experiment with continuous-wave rotational Raman generation in molecular deuterium. We then

discuss vibrational Raman generation and the coherence of the resulting spectrum. An experiment

demonstrating multiple-order rotational Raman generation closes the chapter.

Chapter 8 is a description of the broadband spectrum that we generate with our molecular

modulator. We describe the spectrum, which spans nearly two octaves of optical bandwidth and

contains up to thirty spectral components. We demonstrate that the spectral components have

narrow frequency linewidths and Gaussian spatial profiles.

Chapter 9 focuses on the capability of our modulator to modulate an independent mixing beam.

We demonstrate molecular modulation at a modulation frequency of 17.6 THz for a mixing beam

that makes a single pass through our system. We also discuss the broadband modulation capabili-

ties of our modulator.
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Chapter 10 features numerical simulations that suggest that molecular modulator could be used

as a source of coherent terahertz radiation. We propose two schemes based on realistic experimen-

tal parameters. Our calculations suggest that both would be capable of producing radiation in a

hard-to-access region of the spectrum with an unprecedented combination of power and tunability.

Chapter 11 concludes the work. We examine our on-going experiments involving an indepen-

dent Stokes laser and modulation of an independent mixing beam at a modulation frequency of

89.6 THz. We also briefly discuss possible future directions for our research.
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Chapter 1

Light Modulation

The goal of this project is to develop an efficient molecular modulator, so we will begin with

a discussion of light modulation. In this context, to modulate a light beam means to shift its fre-

quency. An optical modulator, as illustrated in Figure 1.1, is a device that takes monochromatic

laser light of a certain frequency ω0 and shifts the frequency of some of that light to other fre-

quencies. The shifted frequencies are spaced from the original frequency by integer multiples of

the modulation frequency, ωm, which is set by properties of the optical modulator. This frequency

shift can be understood in the time domain as the laser intensity or frequency varying with time.

Figure 1.1 Optical Modulator An optical modulator with modulation frequency ωm takes light at
a frequency ω0 and shifts the frequency of some of the light to frequencies ω0 + nωm, where n is

an integer.
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1.1 Phase Modulation and Sideband Generation

The mechanism for the frequency shift in optical modulators is a time-varying index of refrac-

tion. In Section 1.2 we will discuss how such a time-varying index can occur. First, let us discuss

why a time-varying index of refraction yields a frequency shift.

Suppose we have a monochromatic laser at some frequency ω0. We can write its electric field

as

E (t) = E0e
jω0t, (1.1)

where we have explicitly separated the time-dependent phase, ejω0t, from the rest of the complex

field E0. j is the imaginary unit, and t is time.

Now suppose that this monochromatic laser propagates in a material with a refractive index

n (t) that consists of a constant component n0 and a small sinusoidal time variation,

n (t) = n0 + δn · sin (ωmt) , (1.2)

where δn� n0.

The index of refraction of a material is inversely proportional to the velocity at which light

travels through it,

n =
c

v
, (1.3)

so the sinusoidal time-varying component of the index yields a time-varying component of the

velocity. Furthermore, since the phase delay that light experiences in a material is directly propor-

tional to its velocity, this means that there is also a sinusoidal time variation in the phase of the

light.

φ (t) = φ0 + δφ · sin (ωmt) , (1.4)

Note that we again have a constant term φ0 and a small time-varying term that varies with the same

frequency as the index of refraction variation. Again, the constant term dominates: δφ� φ0.

Including this phase delay in the electric field above (Equation 1.1) yields

E (t) = E0e
j(ω0t+φ(t))

= E0e
j(ω0t+φ0+δφ·sin(Ωt)). (1.5)
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We can absorb the time-independent phase ejφ0 into the time-independent complex field and

call this new time-independent leading termE ′0, which allows us to rewrite our electric field (Equa-

tion 1.5) as

E (t) = E ′0e
j(ω0t+δφ·sin(ωmt))

= E ′0e
jω0tejδφ·sin(ωmt), (1.6)

in which the time-dependence is entirely contained in the last two terms.

Now let us examine the time-dependence of this phase. Because the variation δφ is small, we

can approximate the latter half of the exponential using a Taylor expansion

ejδφ·sin(ωmt) ≈ 1 + jδφ · sin (ωmt) , (1.7)

which yields

E (t) ≈ E ′0e
jω0t (1 + jδφ · sin (ωmt)) . (1.8)

Next from Euler’s formula, we can rewrite the sine term as the difference of two complex

exponentials,

jδφ · sin (ωmt) = jδφ · 1

2j

(
ejωmt − e−jωmt

)
=

δφ

2

(
ejωmt − e−jωmt

)
. (1.9)

Making this substitution into Equation 1.8 gives us

E (t) ≈ E ′0e
jω0t

(
1 +

δφ

2

(
ejωmt − e−jωmt

))
= E ′0e

jω0t +
δφ

2
E ′0e

jω0t
(
ejωmt − e−jωmt

)
= E ′0e

jω0t +
δφ

2
E ′0
(
ej(ω0+ωm)t − ej(ω0−ωm)t

)
. (1.10)

The electric field now is oscillating at three different frequencies; it now has components at

ω0 + ωm and ω0 − ωm as well as at the original ω0. The fields at these new frequencies are called

sidebands. Notice that their amplitude is decreased by a factor of the small δφ. The sideband

that is shifted down in frequency is called the Stokes sideband, while the sideband that is shifted
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up in frequency is called the anti-Stokes sideband. It is important to note that there are only

three frequencies because we only included the first two terms in the Taylor expansion of our

exponential. Had we included more terms, we would have seen more frequencies at ω0 − qωm

and ω0 + qωm (with q as a positive integer). These are called higher-order Stokes and anti-Stokes

sidebands. (The higher-orders sidebands have smaller amplitudes due to increasing powers of δφ.)

This process of sideband generation is called phase modulation. Although it will not be discussed

here, it can be shown in a similar manner that a time-varying amplitude will also produce frequency

sidebands.

1.2 Methods of Optical Modulation

There are several approaches that can be used to produce a time-varying index of refraction

and thus to modulate light. The two most commonly used methods of frequency modulation are

acousto-optic and electro-optic modulation. We will briefly discuss these common types of mod-

ulation before moving on to discuss molecular modulation, which is the focus of this thesis. (See

the beginning of Chapter 9 for an additional comparison of these three types of modulation.)

1.2.1 Acousto-Optic Modulation

Acousto-optic modulators (AOMs) create a time-varying index of refraction using mechanical

waves in a crystalline structure. As illustrated in Figure 1.2, a periodic driving force, such as

one provided by a piezoelectric transducer, creates pressure waves inside an acousto-optic crystal.

Acousto-optic crystals, such as quartz, fused silica, or tellurium dioxide, are materials whose index

of refraction changes with compression and expansion of the crystalline lattice. In an AOM, the

piezoelectric transducer is driven with a radio frequency (RF) signal, and the refractive index of

the crystal varies with this same frequency. Thus, when light passes through this vibrating crystal,

it is modulated and sidebands are formed by the process described above.

Another way to think about AOMs is to consider the interaction between the photons and the

phonons of the oscillating crystalline structure. As the light passes through the crystal, its photons

can exchange momentum with the crystalline phonons. This exchange of momentum has two main



10

effects on the photons. The first is that an exchange of momentum is also an exchange of energy.

If momentum is transferred from a phonon to a photon, the energy of the photon increases, and

thus its frequency is shifted upward. If the relative propagation direction of the compression waves

is reversed, momentum can be transferred from a photon to a phonon. This leads to the photon

frequency being shifted downward. The second consequence of the momentum transfer is that, in

order to conserve momentum, the photons are diffracted from their original trajectories. Thus, the

frequency-shifted light is spatially separated from the original beam.

Figure 1.2 Acousto-Optic Modulator An acousto-optic modulator uses pressure waves to create a
time-varying index of refraction in a crystalline structure. This time-varying index can be used to

modulate the frequency of laser light. The frequency shift is the result of an exchange of
momentum between phonons in the crystal and incident photons.

1.2.2 Electro-Optic Modulation

Electro-optic modulators (EOMs) create a time-varying index of refraction using time-varying

electric fields. As depicted in Figure 1.3, a time-varying voltage is applied across a capacitor whose

parallel plates are separated by an electro-optic crystal. The indices of refraction of electro-optic

crystals, such as lithium niobate (LiNbO3) or gallium arsenide (GaAs), change in the presence of an

applied electric field. Due to the applied field, the atoms in the crystal feel an electric force, which

distorts the crystalline structure, changing the index of refraction. When the relationship between

applied field strength and refractive index is linear, as is the case with lithium niobate and gallium

arsenide, the effect is called the Pockels effect. (The linear Pockels effect, which is relatively strong
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and only present in crystalline materials that lack inversion symmetry, can be contrasted with the

Kerr effect, a more widely exhibited, but usually weaker nonlinear electro-optic response.) With a

parallel plate capacitor, the electric field between the plates is directly proportional to the applied

voltage. Thus, a sinusoidal time variation of the voltage produces a sinusoidally-varying electric

field on the crystal, which in turn creates a sinusoidally-varying index of refraction due to the

Pockels effect. As with an AOM, this variation generates frequency sidebands on light passing

through the crystal. Unlike with an AOM, however, the sidebands propagate collinearly with the

original frequency.

Figure 1.3 Electro-Optic Modulator An electro-optic modulator uses an alternating electric field
to create a time-varying index of refraction in a crystalline structure. This time-varying index can
be used to modulate the frequency of laser light. The alternating electric field is provided by an

alternating voltage across parallel plate capacitors surrounding an electro-optic crystal.

1.2.3 Molecular Modulation

This thesis focuses on a third type of modulator: molecular modulators. As shown in Figure

1.4, molecular modulators create a time-varying index of refraction with coherently rotating or

vibrating molecules. Lasers of the appropriate frequencies incident on a molecular gas can induce

rotations and vibrations in the molecules. When the driving laser fields are strong enough, the

molecules all vibrate (or rotate) in unison. This coherent, periodic molecular motion yields a time-

varying index of refraction.
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Figure 1.4 Molecular Modulator A molecular modulator uses coherently vibrating (or rotating)
molecules to create a time-varying index of refraction in a molecular gas. This time-varying index

can be used to modulate the frequency of laser light. As discussed in more detail in following
sections, the coherent motion of the molecules is stimulated by lasers with frequencies

corresponding to particular molecular resonances.

The diatomic molecules shown in Figure 1.5 provide a simplified, semi-classical explanation

of the source of the time-varying index of refraction in rotating and vibrating molecules. For

vibrations, when the molecular bonds are stretched, there is more space between the atoms, and

the index of refraction is lower than when the bonds are compressed and the atoms are close

together. For rotations, when the molecules are oriented perpendicular to the propagation direction

of the driving fields, the index of refraction is lower than when the molecules are oriented parallel

to the fields. In both cases, this time-varying index of refraction generates frequency sidebands on

light passing through the molecular gas, just as with AOMs and EOMs.

For a single molecule, the index change illustrated in Figure 1.5 is a negligible effect. For

an ensemble of randomly vibrating and rotating molecules, the different molecules oscillate with

different phases and orientations. The individual contributions wash out, and the net effect is small.

However, if we have an ensemble of molecules oscillating in unison, the contributions from each

molecule add coherently, and the net effect can be significant. The net effect of this coherent

oscillation is a time-varying index of refraction. Coherence is the key mechanism for molecular

modulation. Increased coherence yields an increase in efficiency for the modulator. (As discussed

later in Section 2.3, this coherence is related to the density matrix of the molecular system. See the

discussion above Equation 2.45.)
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Figure 1.5 Index of Refraction Variation As molecules vibrate and rotate, their indices of
refraction change. Semi-classically, this variation can be understood as a changing density seen
by an incident laser. The laser experiences a higher index of refraction when the molecules are

compressed or oriented so as to increase the optical density.

Another way to view the frequency shift in molecular modulation is to consider Raman scat-

tering. Raman scattering is an inelastic collision, an energy exchange, between light and matter.

When an incident photon collides with a molecule, the photon can give energy to the molecule,

exciting a vibration or rotation in the molecule. The photon loses energy in the collision and thus

exits with a lower frequency. (As in an EOM, the frequency shifted photon continues on its original

path.) An inelastic collision can also cause an upward shift in frequency if the photon gains energy

from a rotating or vibrating molecule (which then rotates or vibrates at a slower rate). The inelastic

collisions of Raman scattering can be contrasted with the elastic collisions of Rayleigh scattering.

In Rayleigh scattering, the collisions are elastic and no energy is exchanged between the photon

and the molecule, so no frequency shift occurs. Rayleigh scattering, as well as the two inelastic

Raman scattering processes, is illustrated in Figure 1.6.

In order to understand this process more completely, we will examine scattering from a quan-

tum point of view. We can view both Raman and Rayleigh scattering as two-photon processes, with

an incident photon and a scattered photon. The energy difference between the photons corresponds

to the energy splitting between ro-vibrational energy levels of the molecules. (Ro-vibrational here
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Figure 1.6 Raman and Rayleigh Scattering In Raman scattering events, the collision between the
photon and the molecule is inelastic. (a.) The photon can give energy to the molecule, exciting the
molecule and leaving with less energy and thus a lower frequency. (b.) The photon can also gain

energy from the molecule, de-exciting the molecule and leaving with more energy and thus a
higher frequency. (c.) In contrast, Rayleigh scattering is an elastic collision. The molecule
remains in the same state and the photon retains the same frequency. In each case, the plots

illustrate the frequency, ω, of the photon both before and after the collision.

refers to the quantum mechanical energy state of a molecule, which includes both rotational and

vibrational components. Throughout this thesis, all ro-vibrational states mentioned are in the elec-

tronic ground state unless explicitly stated otherwise.)

Consider a molecule with ro-vibrational states |a〉 and |b〉, as well as excited electronic-ro-

vibrational states |i〉 that are much higher in energy. (Single-photon transitions from |a〉 to |b〉

are dipole forbidden, but single-photon transitions from either |a〉 or |b〉 to the upper states |i〉 are

allowed.) Such a system is shown below in Figure 1.7. Note that excited states |i〉 are so much

higher in energy that they are not shown. The energy splitting between the lower two states will
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determine the modulation frequency of the molecular modulator:

Eb − Ea = |}ωinc − }ωsc|

= }ωm, (1.11)

in which Ea and Eb are the energies of states |a〉 and |b〉, ωinc and ωsc are the frequencies of the

incident and scattered photons, ωm ≡ |ωinc−ωsc| is the modulation frequency, and } is the reduced

Planck’s constant.

Suppose we begin with the molecule in state |a〉. An incident photon excites the molecule to

a so-called virtual state. This transition to a virtual state is actually a very-far-detuned transition

to one of the excited states |i〉. This detuning is so great that the virtual state is not stable; another

transition must occur to connect to a stable energy state. (This large detuning from the excited

state means that there is essentially no resonance condition for this transition to a virtual state.

The scattering process is weak, but a broad range of frequencies can excite the molecule to the

virtual state. This is key to the broadband modulation capability of our molecular modulator. See

the discussion around Figure 9.5.) In the case of Rayleigh scattering, our incident and scattered

photons have the same energy, so this two-photon transition connects back to the original state |a〉,

and there is no change in energy.

To examine a Raman transition, again suppose we start in state |a〉. The incident photon, now

called the pump photon, again excites the molecule to a virtual state. This time, however, the

photon gives energy to the molecule, so the scattered photon is lower in energy. The molecules

is excited to state |b〉 by the two-photon transition illustrated in Figure 1.8. This type of Raman

scattering, in which the scattered photon is lower in both energy and frequency than the incident

pump photon, is called a Stokes transition, and the scattered photon is a Stokes photon.

Raman transitions can also occur if we begin with the molecule in the excited state |b〉. The

incident pump photon again excites the molecule to a (perhaps different) virtual state, but this

time the molecule gives energy to the photon, and the scattered photon is higher in energy and in

frequency than the incident photon. This two-photon process results in the molecule transitioning

to the lower energy state |a〉, as shown in Figure 1.8. This process is called an anti-Stokes Raman
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Figure 1.7 Rayleigh Scattering Rayleigh scattering is an elastic process that results in no change
in frequency for the photon nor change in energy for the molecule. The molecule is excited to a

virtual state by the incident photon (solid arrow), but it quickly returns to its original state and the
photon leaves (dotted arrow) without a change in frequency.

Figure 1.8 Raman Scattering Raman scattering is a two-photon inelastic process that results in a
frequency shift for the photon and a change in energy for the molecule. The molecule is first

excited to a virtual state by an incident pump photon (solid green arrow). It then transitions to a
second energy state and the scattered photon (dashed arrow) is shifted in frequency. This Raman
scattering is called a Stokes transition if the molecule gains energy and the photon is shifted to a
lower frequency. It is called an anti-Stokes transition if the molecule loses energy and the photon

is shifted to a higher frequency.

transition, and the higher-frequency scattered photon is called an anti-Stokes photon. (Most anti-

Stokes photons in our experiment are produced through four-wave mixing. See Figure 7.2.)

For both Stokes and anti-Stokes processes, the scattered photons can be scattered again, leading

to further frequency shifts as shown in Figure 1.9. The resulting photons are called higher-order
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Stokes and anti-Stokes photons, and their frequencies are spaced from the original frequency by

integer multiples of the modulation frequency: ωq = ω0 + q · ωm, where q is an integer.

Figure 1.9 Second-Order Raman Scattering Both Stokes and anti-Stokes photons can themselves
experience Raman scattering, and this frequency shift generates higher-order Stokes and

anti-Stokes photons. First- and second-order Raman scattering processes are shown in this figure.
In both scenarios the incident pump photon is the solid green arrow. This photon then scatters as

part of a two-photon transition, generating the first-order Stokes (red) and anti-Stokes (blue)
photons, which are represented with dashed arrows. These first-order photons are then themselves

scattered, generating the second-order Stokes (orange) and anti-Stokes (purple) photons,
illustrated with dotted-line arrows.

Rayleigh scattering occurs much more frequently than Raman scattering. That is, most scat-

tered light is not frequency shifted. If we seek to efficiently shift the frequency of light through

this normally weak process, we must stimulate Raman scattering. Stimulated Raman scattering, a

χ(3) nonlinear process, occurs when we first use resonant driving lasers to “prime” the molecules.

That is, resonant lasers build up molecular coherence by driving two-photon Raman transitions.

This driving process reinforces itself; when there is more Raman scattering, Raman scattering is

more likely to occur. This again highlights the importance of coherence for molecular modulation,

and it provides another way to view coherence. Building up coherence can be understood as mak-

ing a connection between ro-vibrational energy states (between states |a〉 and |b〉 above). This is

key to efficient Raman scattering. When more molecules oscillate in unison, or when the connec-

tion between ro-vibrational states is stronger, modulation is more effective. (Note that significant

stimulated Raman scattering occurs only with coherent light. Without a coherent source, scattered
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photons lack a definite phase relationship, and thus do not add constructively.) Chapter 2 explores

stimulated Raman scattering in more detail.



19

Chapter 2

Raman System Formalism

In order to understand stimulated Raman scattering, we will now examine the Raman system

described in Chapter 1 in more rigorous mathematical detail. Consider a system with the energy

level scheme shown in Figure 2.1. States |a〉 and |b〉 are the ro-vibrational ground and excited

states, respectively, of the Raman transition. States |i〉 are higher energy electronic ro-vibrational

states. Single-photon transitions from |a〉 to |b〉 are electric dipole forbidden, but single-photon

transitions from either Raman state to |i〉 are allowed. We will examine the interaction of this

molecular system and Raman sideband beams of complex amplitudes Eq and angular frequencies

ωq, where q is an integer. E0 is the incident pump beam, and E−1 is then the Stokes beam. Not

shown is E1, the anti-Stokes beam. Higher-order beams are also not shown, but E−2 and E2 are

the second-order Stokes and anti-Stokes beams, and so on for higher q.

Note that since

ωi � ωa, ωb, (2.1)

we use δω for all single-photon detunings from states |i〉;

ωi − ωa ≈ ωi − ωb

≡ δω. (2.2)

Furthermore, let ∆ω be the frequency detuning from the two-photon Raman resonance. This two-

photon detuning is defined as

∆ω ≡ (ωb − ωa)− (ω0 − ω−1), (2.3)
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Figure 2.1 Raman System This simplified molecular Raman system serves as the basis for our
molecular modulator. States |a〉 and |b〉 are the ro-vibrational ground and excited states,

respectively, of the Raman transition. States |i〉 are higher energy electronic ro-vibrational states.
The molecular system interacts with Raman sidebands. E0 is the incident pump beam, and E−1 is

the Stokes beam. The single- and two-photon detunings are given by δω and ∆ω, respectively.

where ωb − ωa is the frequency difference between the Raman energy states, and ω0 − ω−1 is the

frequency difference between the pump and the Stokes lasers. Note that Figure 2.1 is not to scale;

δω � ∆ω. We will also assume that the two-photon detuning is small compared to the frequency

of the Raman transition;

ωRaman ≡ ωb − ωa � ∆ω. (2.4)

In contrast, we assume that the δω is large. In our system, the single-photon detuning is more

than an order of magnitude larger than our photon frequencies and more than seven orders of

magnitude larger than the two-photon detuning. Despite the fact that the large δω puts |i〉 well

outside any single-photon (or two-photon) resonance, these upper level states are necessary for

the Raman process, as we will see below when we examine the Hamiltonian of the system. The

discussion on the Hamiltonian is modeled after work from Grischkowsky and colleagues and the

Harris and Yavuz groups [20, 21, 22, 23, 24, 25].
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This significant single-photon detuning results in inefficient Raman scattering, as the Raman

coupling between the states |a〉 and |b〉 is (very nearly) inversely proportional to the single-photon

detuning. However, the Raman coupling is also proportional to the product of the two driving

electric fields of the two-photon transition. (Both of these facts will be discussed further in the

next section.) By increasing the intensity of the lasers, we can stimulate scattering and increase

the efficiency of the Raman process. In the next section, we will examine in more detail the

Hamiltonian of the Raman system, which will demonstrate the importance of the driving fields for

coherence and for efficient Raman generation.

2.1 Effective Hamiltonian

The molecular wavefunction |ψ〉 is governed by the Schrödinger equation,

j}
d |ψ〉
dt

= Ĥ |ψ〉 , (2.5)

where j is the imaginary unit and Ĥ is the Hamiltonian of the system. We can write the Hamil-

tonian for the molecule-laser interaction as the sum of an unperturbed Hamiltonian Ĥ0 and an

interaction Hamiltonian ĤI ;

Ĥ ≡ Ĥ0 + ĤI . (2.6)

The wavefunction |ψ (t)〉 is defined as follows:

|ψ (t)〉 ≡ ca (t) e−jωat |a〉+ cb (t) e−jωbt |b〉+
∑
i

ci (t) e
−jωit |i〉 . (2.7)

cn (t) and ωn = En
} are the coefficient and frequency associated with molecular state |n〉.

We will make the reasonable approximation that the only non-negligible interaction between

the electric field and the molecule is the electric dipole interaction. If we also ignore insignificant

interactions between (largely unpopulated) upper ro-vibrational states |i〉, this dipole approxima-

tion yields unperturbed and interaction Hamiltonians as follows:

Ĥ0 ≡ }ωa |a〉 〈a|+ }ωb |b〉 〈b|+
∑
i

}ωi |i〉 〈i| , (2.8)



22

and

ĤI ≡ −E (t) P̂ = − E (t)
∑
i

µai |a〉 〈i| − E (t)
∑
i

µbi |b〉 〈i|

− E∗ (t)
∑
i

µ∗ai |i〉 〈a| − E∗ (t)
∑
i

µ∗bi |i〉 〈b| , (2.9)

where E (t) is the electric field, P̂ is the electric dipole moment operator, and µnm is the matrix

element between states |n〉 and |m〉. ∗ denotes a complex conjugate. The total (physical and

therefore real) electric field, E (t), is given by the sum of the Raman sidebands:

E (t) =
1

2

∑
q

Eqe
j(ωqt−kqz) +

1

2

∑
q

E∗q e
−j(ωqt−kqz) (2.10)

where kq ≡ ωq
c

is the wave number (with c as the speed of light), t is time, and z is the displacement

along the direction of propagation. The sums include all Raman sidebands, that is, all integer values

of q. By applying Equation 2.9 to Equation 2.10, we can construct an effective Hamiltonian for the

system:

Ĥ = −}
2

 A B

C D − 2∆ω

 . (2.11)

In this Hamiltonian, we have used the following variables:

A ≡
∑
q

aq |Eq|2 (2.12)

B ≡
∑
q

bqEqE
∗
q−1 (2.13)

C ≡
∑
q

b∗qE
∗
qEq−1 = B∗ (2.14)

D ≡
∑
q

dq |Eq|2 (2.15)

These variables contain the dispersion constants defined as

aq ≡
1

2}2

∑
i

|µai|2
[

1

(ωi − ωa)− ωq
+

1

(ωi − ωa) + ωq

]
(2.16)

and

dq ≡
1

2}2

∑
i

|µbi|2
[

1

(ωi − ωb)− ωq
+

1

(ωi − ωb) + ωq

]
, (2.17)
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and the coupling constant

bq ≡
1

2}2

∑
i

µaiµ
∗
bi

[
1

(ωi − ωa)− ωq
+

1

(ωi − ωb) + ωq

]
. (2.18)

A detailed derivation of the effective Hamiltonian can be found in Appendix A. Note that

in arriving at this result, in addition to the aforementioned assumptions and approximations, we

have assumed that we are close to a two-photon resonance, so we have used the rotating wave

approximation to eliminate terms that oscillate rapidly. We have also assumed that all probability

amplitudes vary slowly compared to 1
δω

and that the transition linewidths are arbitrarily small.

The first thing to note about this Hamiltonian is that it is a 2× 2 matrix; the complex molecular

interaction is effectively a two-level system. Appreciable probability amplitudes exist only in states

|a〉 and |b〉.

Now examine the form of the Hamiltonian in more detail. Note that every term (with the

exception of the detuning term ∆ω) contains a coupling or dispersion constant: aq, bq, or dq. These

constants all feature terms of the form 1
(ωi−ωa)±ωq or 1

(ωi−ωb)±ωq
. As discussed earlier, the large

single-photon detuning means that ωi − ωa ≈ ωi − ωb ≡ δω. Also, the detuning is much greater

than the photon frequency: δω � ωq. Therefore, 1
(ωi−ωa)±ωq ≈

1
(ωi−ωb)±ωq

≈ 1
δω

. Each of the

constants A, B, and D is then roughly proportional to the inverse of the single-photon detuning;

A,B,D ∼ 1

δω
. (2.19)

The effective Hamiltonian also shows how the upper ro-vibrational states |i〉 play an necessary

role in the transition, even though their probability amplitudes are negligibly small. In addition to

the appearance of ωi in the detuning expressions, the terms of the effective Hamiltonian all depend

on a product of µai and µbi, the matrix elements of the transition.

Also note that all terms in the Hamiltonian depend on some product of the electric fields of

the lasers, Eq and Eq−1. This indicates that, perhaps unsurprisingly, when the fields are more in-

tense, more interaction occurs. Moreover, the dependence of the off-diagonal terms on the product

EqE
∗
q−1 (or its conjugate) highlights the fact that the coupling between states |a〉 and |b〉 is pro-

portional to both fields in the two-photon transition (as opposed to, for example, being a sum of
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independent contributions from each field). The coupling is driven by the product of the pump and

the Stokes beams (or by any pair of consecutive sidebands).

Note that the terms A and D have the form of a second-order perturbation theory calculation of

the product of the electric field, Eq, and the electric dipole moment, µmn. Thus, we can understand

the physical meaning of the A and D terms in the Hamiltonian; they are proportional to the AC

Stark shift of the states |a〉 and |b〉 due to the laser fields. The off-diagonal terms B and C are

related to the coupling of the molecular states. They each have the product of Eq · µai (from the

first photon) and Eq−1 · µbi (from the second photon). These single-photon Rabi frequencies are

divided by the detunings of the transitions. Such a product of single-photon Rabi frequencies over

a detuning yields a term proportional to the two-photon Rabi frequency. Therefore, B and C are

proportional to the two-photon Rabi frequency.

2.2 Eigenstates and Eigenvectors

The eigenstates of the effective Hamiltonian are calculated to be

|±〉 = 2B |a〉+

[
− (A−D + 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

]
|b〉 (2.20)

with eigenvalues

E± = −}
4

[
(A+D − 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

]
. (2.21)

See Appendix B for detailed calculations.

We focus on the lower energy state, |−〉, because it is smoothly connected to the unperturbed

ground state, |a〉. This is assured by the adiabatic theorem. The adiabatic theorem states that a

system remains in its original eigenstate when perturbed if the perturbation is slow compared to

the characteristic frequency of the system [26]. In the case of our experiment, the perturbations to

the Hamiltonian of the Raman system come from the applied laser fields. The time scale of these

perturbations is set by how quickly the fields build up in the cavity and by the fluctuations in the

cavity fields over time. In both cases, the fastest fluctuations occur on the order of the time that the
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light spends in the cavity,

tperturbations ∼ tround−trip · n =
2L

c
· F , (2.22)

where tperturbations is the characteristic timescale of the perturbations, tround−trip is the time light

takes to go twice L (the length of the cavity), c is the speed of light in the cavity, n is the average

number of round trips that the light makes before being transmitted, and F is the finesse of the

cavity. (Finesse can be thought of here as how well a cavity holds light. A high finesse means

that light reflects many times on the mirrors before being transmitted. See Section 6.2 for a more

complete discussion of finesse.) In our experiment, tperturbations ∼ 0.1 ms.

The characteristic time scale of the Raman system comes from the energy difference between

the eigenstates of the system. This splitting is given by the energy difference between the eigen-

values (Equation 2.21):

∆E = E+ − E−

= −}
4

[
(A+D − 2∆ω)−

√
(A−D + 2∆ω)2 + 4 |B|2

]
−
(
−}

4

[
(A+D − 2∆ω) +

√
(A−D + 2∆ω)2 + 4 |B|2

])
=

}
2

√
(A−D + 2∆ω)2 + 4 |B|2. (2.23)

As discussed at the end of Section 2.1, A, B, and D are roughly proportional to 1
δω

and to the

product of the electric fields of the Raman sidebands. Thus, if we take the applied fields to be

weak, the fact that δω is large means that A, B, and D are very small, and

∆E = E+ − E−

= −}
4

[
(A+D − 2∆ω)−

√
(A−D + 2∆ω)2 + 4 |B|2

]
−
(
−}

4

[
(A+D − 2∆ω) +

√
(A−D + 2∆ω)2 + 4 |B|2

])
=

}
2

√
(A−D + 2∆ω)2 + 4 |B|2

≈ }
2

√
(2∆ω) 2

= }∆ω. (2.24)
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Thus, the characteristic time scale of the Raman system would be

tcharacteristic ∼
1

∆ω
. (2.25)

For our experiment, this characteristic time is tcharacteristic ∼ 10 ns. Therefore, tperturbations ∼

0.1 ms � tcharacteristic ∼ 10 ns. The timescale of the perturbations is much longer than the

characteristic timescale of the system, and thus the adiabatic theorem holds.

The lower energy eigenstate |−〉 (Equation 2.20) is thus connected to the unperturbed ground

state. We now rewrite this lower energy state in a more standard form.

|−〉 = 2B |a〉+

[
− (A−D + 2∆ω) +

√
(A−D + 2∆ω)2 + 4 |B|2

]
|b〉 (2.26)

can be written as

|−〉 ≡ |ψ〉 = cos

(
θ

2

)
ej

φ
2 |a〉+ sin

(
θ

2

)
e−j

φ
2 |b〉 , (2.27)

where we have defined θ and φ with the following relationships:

θ = tan−1

(
2 |B|

A−D + 2∆ω

)
, (2.28)

and

B = |B|jφ . (2.29)

Further discussion of the eigenstates and eigenvalues can be found in Appendix B.

2.3 Electric Field Propagation in the Raman System

We can now examine how the Raman sideband fields Eq propagate through the molecular

medium. We begin by calculating the molecular polarization due to the applied fields. The polar-

ization is given by the expectation value for the dipole moment operator P̂ with a generic molecular

state |ψ (t)〉:

P (t) = 〈ψ (t)| P̂ |ψ (t)〉 , (2.30)

with

P̂ ≡
∑
i

µai |a〉 〈i|+
∑
i

µbi |b〉 〈i|+
∑
i

µ∗ai |i〉 〈a|+
∑
i

µ∗bi |i〉 〈b| . (2.31)
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and, as above,

|ψ (t)〉 ≡ ca (t) e−jωat |a〉+ cb (t) e−jωbt |b〉+
∑
i

ci (t) e
−jωit |i〉 . (2.32)

In these expressions, cn (t) and ωn = En
} are the coefficient and frequency associated with molec-

ular state |n〉. µnm is the dipole matrix element between states |n〉 and |m〉.

Using the calculated polarization and the assumption that the two-photon detuning ∆ω is small

compared to the frequencies of the fields and of the transitions, we find the following propagation

equation for the Raman sidebands in the molecular medium:

∂Eq
∂z

= −jη}ωqN
[
|c̃a|2Eqaq + |c̃b|2Eqdq + c̃∗ac̃bEq+1bq+1 + c̃ac̃

∗
bEq−1b

∗
q

]
, (2.33)

where Eq and ωq are the electric field and frequency of the qth sideband, c̃n is a phase-transformed

coefficient of state |n〉, and aq, bq, and dq are the coupling and dispersion constants defined above

(Equations 2.16, 2.17, and 2.18). z is the propagation direction, and N is the number of molecules

per unit volume. c̃n is the phase-transformed coefficient of the molecular state |n〉, and

η ≡
√
µ

ε0

. (2.34)

See Appendix C for more details.

In the derivation of the propagation equation, we have used the slowly-varying envelope ap-

proximation to Maxwell’s equations. This approximation is based on two main assumptions. The

first is that the temporal variations of the light envelope are small compared to the frequencies of

light interacting with the system. The second is that the spatial variations on the envelope of the

light are small compared to the wavelengths of the light. The slowly varying envelope approxi-

mation yields a fairly accurate description of the molecular interaction [27]. Note that we have

also assumed that diffraction effects are negligible, so we have dropped a second-order term in the

transverse directions.

The form of Equation 2.33 reveals two vital features of the interaction of the light and the

molecular system. The first is the interaction and interdependence of the Raman beams. The

equation explicitly shows how the propagation of the qth sideband, ∂Eq
∂z

, depends not only on the

qth electric field, but also on the (q − 1)th and (q + 1)th sidebands, Eq−1 and Eq+1.
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Moreover, the form of Equation 2.33 demonstrates the importance of the coefficients ca and

cb in determining the strength of this interaction, which determines the efficiency of the Raman

scattering. As mentioned in Chapter 1, semi-classically, the key to efficient Raman scattering is

having all molecules coherently rotating or vibrating. Quantum mechanically, this uniform ro-

vibrational motion corresponds to the molecules being in a (near) equally-weighted superposition

of states |a〉 and |b〉. That is, the molecules are in a state

|ψ〉 = ca |a〉+ cb |b〉 (2.35)

such that

|ca| ≈ |cb| . (2.36)

The Raman interaction is stronger, and thus the molecular modulation is more efficient, when the

molecules are in such a mixed state. A density matrix approach helps to quantify this mixture. We

can define a density matrix for our system as follows:

ρ ≡

ρaa ρab

ρ∗ab ρbb

 =

|ca|2 c∗acb

cac
∗
b |cb|

2

 . (2.37)

In this density matrix, the diagonal elements ρaa and ρbb give the fractional populations of

states |a〉 and |b〉. The off-diagonal element ρab is called the coherence of the molecular system.

This is a quantitative expression of the same coherence that was discussed in Chapter 1 in terms of

uniform oscillations of molecules and in terms of connections between ro-vibrational states. Here

we see that the coherence (along with its conjugate) determines the extent of the mixing between

the quantum states |a〉 and |b〉. The mixing stemming from this coherence is the key to molecular

modulation.

For the eigenstate that is smoothly connected to the ground state (Equation 2.27), the density

matrix elements are given by

ρaa = cos2

(
θ

2

)
, (2.38)

ρbb = sin2

(
θ

2

)
, (2.39)
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and

ρab =
1

2
sin (θ) ejφ, (2.40)

where θ and φ are defined as above (Equations 2.28 and 2.29).

In the regime where the molecular states are weakly coupled, we can rewrite these matrix

elements as follows:

ρab ≈
B

A−D + 2∆ω
, (2.41)

ρaa ≈ 1− |ρab|2 , (2.42)

and

ρbb ≈ |ρab|2 , (2.43)

where A, D, and 2∆ω are defined as in the effective Hamiltonian above (Equation 2.11). More

details can be found in Appendix D.

Finally, using the density matrix definitions, we can rewrite Equation 2.33 as

∂Eq
∂z

= −jη}ωqN
[
ρaaEqaq + ρbbEqdq + ρ∗abEq+1bq+1 + ρabEq−1b

∗
q

]
. (2.44)

This form of the propagation equation highlights the pivotal role of the coherence in the creation

(and interaction) of the Raman sidebands. The coherence couples the electric fields of differ-

ent sidebands, and this allows for the generation of new sidebands. Through the coherence, the

(q + 1)th and the (q − 1)th sidebands contribute to the propagation of the qth sideband. Thus, for

example, the presence of a (q − 1)th field can generate a previously non-existent qth field. The

efficiency of this process is tied to the coherence. When the magnitude of ρab increases, the con-

nection between Raman sidebands increases, and molecular modulation is more efficient. Much

of our research is devoted to efforts to increase ρab in our molecular system to a value closer to the

maximal coherence value of

|ρmaxab | = 0.5, (2.45)

which corresponds to half of the molecular population being coherently transferred from the lower

Raman state |a〉 to the upper Raman state |b〉.
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Note that Equation 2.44 is true for a generic field Eq; this Eq need not be the same as the Eq

used to build up the coherence. This is extremely important because it means that almost any beam

can be modulated by the Raman system. Strong beams can be used to drive the coherence, while

an arbitrary, independent beam can mix with that coherence and be modulated. An experimental

realization of such an independent mixing beam scheme is discussed in Chapter 9.

A final quick aside about the two-photon detuning and its connection to phase: In Raman

systems with large single-photon detunings such as this system, the Stark shift terms A and D will

be roughly equal. Thus, the denominator of θ (Equation 2.28) is

A−D + 2∆ω ≈ 2∆ω, (2.46)

and its sign (and thus the sign of θ) is determined by the sign of ∆ω. If ∆ω (and thus θ) is positive,

then the coherence

ρab =
1

2
sin (θ) ejφ (2.47)

will have the phase ejφ. Because of how we defined φ (Equation 2.29), this is the same phase as

B, the coupling term from the driving fields. Thus, if the two-photon detuning ∆ω is positive, the

coherence has the same phase as the driving field coupling term, and we say that it is a phased

eigenstate. On the other hand, if ∆ω (and thus θ) is negative, then the coherence effectively picks

up a negative sign, as sin (−x) = − sin (x).

ρab =
1

2
sin (θ) ejφ

= −1

2
sin (|θ|) ejφ (2.48)

This is equivalent to a π phase shift, as −ejφ = ej(φ+π).

Thus, the phase of the coherence is now π out of phase with the driving field term B, which

has phase φ.

ρab =
1

2
sin (|θ|) ej(φ+π) (2.49)

Therefore, if the two-photon detuning ∆ω is negative, it is called an anti-phased eigenstate.

In both the phased and anti-phased cases, the phase of the coherence compared to the driving

fields is well-defined, and the contributions from all the molecules add together in phase. (This is
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true assuming that the two-photon detuning is large enough that all molecules have the same sign

for the detuning. With a small detuning, inhomogeneous broadening or a driving laser with a large

frequency bandwidth could lead to some molecules with a positive ∆ω and some with a negative

∆ω. This would result in different molecules experiencing differently-phased coherences, and the

effects would not add constructively.)
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Chapter 3

An Overview of Molecular Modulation Research

Our work with molecular modulation is motivated by promising past work in the field. This

chapter provides a brief overview of stimulated Raman scattering and molecular modulation re-

search.

3.1 Early Pioneering Research

The ideas behind molecular modulation began to come together in the early 1990s. In 1993,

Imasaka and colleagues put forth one of the first proposals for molecular modulation using Raman

scattering [28]. They used computer simulations to show how a spectrum generated through Raman

scattering in molecular hydrogen could be used to generate ultrashort optical pulses. Soon after

in 1994, Kaplan suggested a similar technique using cascaded stimulated Raman scattering to

produce trains of sub-femtosecond pulses [29].

Within a decade, experiments were demonstrating the feasibility and power of molecular mod-

ulation. In 1999, Kawano et al. demonstrated stimulated Raman scattering in gaseous hydro-

gen [30]. They observed both vibrational and rotational Raman scattering, including higher-order

beams generated through four-wave mixing. The Harris group used two driving lasers to stimulate

Raman transitions in molecular hydrogen [31, 32]. In the first few years of the 2000s, they used

coherently oscillating molecules to create both frequency- and amplitude-modulated light from a

generated spectrum ranging from 195 nm to 2.94 µm in wavelength. In 2002, Losev et al. fur-

ther demonstrated the usefulness of molecular modulation with the development of a broadband

multi-frequency shifter [33]. This device generated many orders of frequency-shifted sidebands
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through molecular modulation in a cell of hydrogen using a multi-pass geometry. In 2003, the

Harris group used adiabatic molecular modulation to generate approximately 200 Raman side-

bands, and they showed that these sidebands had mutually coherent phases [34]. In 2005, Shverdin

et al. demonstrated the utility of the technique for ultrashort pulse generation when they used a

modulation generated spectrum to synthesize a light pulse with the duration of a single optical

cycle [35]. Zhavoronkov and Korn have extended the technique of ultrashort pulse generation

by means of molecular modulation [36]. In 2002, they moved from the adiabatic regime to the

impulsive regime, in which the driving laser pulse has a duration shorter than the inverse of the

molecular frequency. In this technique, the strong driving pulses prepare the molecular coherence.

Detrimental effects from these strong pulses dissipate before the arrival of a later, weaker pulse

that is modulated by the remaining coherence.

3.2 Recent Developments

Molecular modulation research continues to expand and reach new milestones. There have

been developments in both the generation of Raman spectra and in the manipulation of such spec-

tra towards waveform synthesis. In 2008, the Kung group used molecular modulation to generate

a Raman spectrum capable of generating sub-single-optical-cycle pulses with duration less than

0.5 fs [37]. This work is set apart from previous work because their driving laser frequencies were

selected to be exact multiples of their modulation frequency, and thus the generated sidebands

were all harmonics of a common fundamental frequency (the modulation frequency). Therefore,

rather than having the peak pulse location vary with respect to the peak of the carrier envelope,

the sub-cycle pulses generated by this spectrum have a constant carrier-envelope phase. In 2012,

the Imasaka group was able to generate a broad example of such a harmonic spectrum, with high-

order Raman scattering generating a spectrum ranging from the ultraviolet to the near infrared [38].

In 2008, Suzuki and colleagues performed detailed phase measurements on the components of a

generated Raman spectrum [39]. This helped to reveal the temporal structure of ultrashort pulses

generated from the spectrum, and the definite phase relationship suggests the feasibility of using

such a spectrum for Fourier synthesis of waveforms. In 2009, the Kung group demonstrated the
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ability to manipulate the carrier envelope phase of pulses generated through molecular modulation

[40]. Two years later, they further demonstrated the ability to synthesize sawtooth, square, and tri-

angular waves using phase and amplitude control of Raman spectra [41]. The ability to synthesize

arbitrary optical waveforms is powerful, as it allows for the exploration and coherent manipulation

of molecules with unprecedented control and resolution. For recent developments in coherent con-

trol, see the work of Gandman and colleagues [15]. For an overview of coherent control, see the

review article by Shapiro and Brumer [14].

3.3 Limitations of Past Work

These pioneering experiments, along with others, demonstrated the viability of molecular mod-

ulation. They also had one important thing in common; all of the experiments described above were

accomplished using pulsed driving lasers to stimulate Raman scattering. Q-switched pulsed pump

and Stokes lasers were loosely focused on a Raman cell filled with low-pressure molecular gas.

The ultrafast pulses from these lasers were typically 10s of mJ in energy and on the order of 10 ns

in duration.

As discussed in Chapter 2, the coherence of a Raman system is proportional to the product of

the lasers that drive the two-photon transition. To get near-maximal coherence and thus efficient

molecular modulation, strong driving fields are required. Preparation of near-maximal molecular

coherence requires laser intensities approaching 1 GW/cm2 [42]. Pulsed lasers are capable of

producing these intense fields, and that is why most early molecular modulation experiments used

pulsed lasers.

There are drawbacks to using pulsed lasers in molecular modulation experiments that have lim-

ited their utility, and these shortcomings have motivated our research. First of all, pulsed molecular

modulation cannot be used with CW laser sources. (Particularly relevant is the incompatibility of

pulsed modulation with CW titanium-sapphire lasers. See Chapter 11.) Furthermore, while they

are capable of producing the high fields necessary to achieve near-maximal coherence, pulsed

lasers are fundamentally limited in their frequency linewidths. Pulsed laser linewidths cannot be

arbitrarily narrow; the frequency spread ∆ν is roughly inversely proportional to the pulse duration
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tpulse:

∆ν ∼ 1

tpulse
. (3.1)

Note that ν is the frequency, rather than the angular frequency, ω, which we used in previous

chapters. From this point on, we will often discuss frequency rather than angular frequency. The

two are related in the usual way as shown in Equation 3.2.

ω = 2πν (3.2)

The relationship between linewidth and pulse duration of Equation 3.1 limits the frequency

linewidth of Raman sidebands produced through molecular modulation with pulsed lasers. For

a pulse with tpulse ∼ 10 ns, this implies a frequency linewidth of ∆ν ∼ 100 MHz. Thus, side-

bands from the generated spectrum have too wide of a frequency linewidth to be used in precision

spectroscopy or other applications that require narrow linewidth lasers.

3.4 Continuous-Wave Molecular Modulation

The frequency linewidth limitation on pulsed lasers has motivated our pursuit of molecular

modulation based on stimulated Raman scattering with continuous-wave (CW) lasers. CW lasers

have no pulse duration, so the relationship of Equation 3.1 places no lower bound on the frequency

linewidth. Narrow linewidth CW lasers routinely have full-width-half-maximum linewidths on

the order of 100s of Hz to 100s of kHz. (The CW lasers in our experiment have full-width-

half-maximum linewidths around 10 kHz.) Although there are certainly technical challenges, in

principle, CW lasers can have frequency linewidths on the order of 1 Hz. If the lasers that drive

the Raman process have very stable, precisely known frequencies, then the modulation frequency

will also be very stable and precisely known. Therefore, the same will be true for all of the

sidebands. This stability and precision could be accomplished by locking the driving lasers to a

stable frequency reference, like one of the teeth of a frequency comb. Such references have been

shown to have frequency precision better than 1 part in 1015 [43, 17].

CW lasers also avoid the pulsed laser problems of low duty cycles and pulse-to-pulse incon-

sistencies in timing and intensity. The low duty cycles of pulsed lasers, usually less than 1 part in
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107, severely restricts data rates in pulsed experiments, and the pulse-to-pulse inconsistencies are

detrimental to experimental repeatability.

The benefits of CW lasers must be weighed against the significant challenge of a decrease in

intensity. As mentioned above, the coherence of a Raman system is proportional to the product of

the driving laser fields. CW lasers cannot provide the high intensities achieved at the peak of laser

pulses, and thus CW lasers are much less efficient at stimulating Raman scattering. As proposed

by Yavuz and by Shinzen et al. in the 2000s, this limitation can be overcome [44, 45]. CW lasers

can be used for molecular modulation if the scattering occurs inside a high-finesse optical cavity,

which increases the laser intensity seen by the molecules. (It should be noted that this also adds

the experimental complexities associated with high-finesse cavities. See the discussion below and

also Chapter 6 for further discussion of optical cavities.)

This idea of CW molecular modulation was motivated by earlier successes of Raman scattering

in a high-finesse cavity. The Carlsten group first demonstrated a CW Raman laser (a laser based

on stimulated Raman scattering rather than stimulated emission) using hydrogen molecules in a

high-finesse cavity in the late 1990s [46]. Carlsten and colleagues also developed and explored the

theory behind Raman lasing [47]. Further experiments in the early 2000s demonstrated the power

of stimulated Raman scattering inside a high-finesse cavity. Tunable Raman lasers were developed

that were capable of generating both Stokes and anti-Stokes sidebands off of vibrational and rota-

tional molecular transitions [48, 49, 50]. In the middle of the decade, simulations and experiments

from the Imasaka group demonstrated that the spectra generated from such CW Raman scattering

were coherent and suitable for generating ultrashort pulses [45, 51].

As an aside, note that the addition of a cavity places restrictions on the frequencies of the

Raman lasers, and it slightly alters the energy level scheme discussed in Chapters 1 and 2. (For

example, see the energy level scheme of Figure 2.1.) As shown in Figure 3.1, the addition of a

cavity means that the lasing is restricted to cavity resonances, which are represented by purple

dotted lines. Thus, the two-photon detuning and the Stokes frequencies are limited to a set of

discrete values set by these resonances. However, the cavity resonances can be modified by slightly

tuning the pump frequency or the cavity length.
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Figure 3.1 Raman System in a Cavity The addition of a cavity modifies the energy level diagram
of the Raman system. The Raman frequencies are limited by the requirement that they be

resonant with the cavity. The cavity resonances are marked with dotted purple lines. |a〉 and |b〉
are ro-vibrational states of the molecule. ω0 and ω−1 are the frequencies of the pump and Stokes
photons, respectively, that drive the two-photon Raman process. ∆ω is the two-photon detuning,

the difference between the Raman frequency (ωb− ωa) and the frequency difference of the driving
photons (ω0 − ω−1). In this case, ∆ω is the difference between the frequency of state |b〉 and that
of the cavity resonance on which the Stokes beam is lasing. The cavity resonances, and thus ∆ω,

can be changed by adjusting the cavity length or pump laser frequency.

A significant advance made by Yavuz in 2007 was to propose to use this stimulated Raman

scattering in a high-finesse cavity as a molecular modulator for an independent laser beam [44]. In

this proposal, it was no longer necessary for a beam to be resonant with the cavity in order to be

modulated. The idea is that the driving lasers are resonant with the cavity, and their strong fields

build up coherence in the molecular medium. An independent mixing beam then passes through

the cavity, mixes with the established coherence, and its frequency is modulated in a single pass.

The lack of a resonance requirement for the mixing beam greatly increases the versatility of the

modulator. Although there are technical limitations from the optics used, this method can be used

to develop a broadband modulator, one capable of modulating any laser in the optical range of
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the spectrum (roughly 100 nm - 10 µm). (See Chapter 9 for further discussion of broadband

modulation.)

Experimental progress with CW molecular modulation continues to the present. In 2009, the

Yavuz group demonstrated experimental progress towards the proposed goal of a broadband mod-

ulator, developing a CW Raman laser inside a high-finesse cavity that will serve as the basis for the

proposed modulator [52]. (See Chapter 7.) The Yavuz modulator operates at higher laser powers,

lower molecular pressures, and colder temperatures than other molecular modulators. The high-

power work in the Yavuz group is motivated by the fact that in 2004, the Carlsten group demon-

strated high-power Raman lasing, a necessary step towards a high-power molecular modulator

[53]. (The Imasaka group also continues to work with continuous-wave stimulated Raman scatter-

ing, but they have focused on phase matching of Raman components in a dispersion-compensated

cavity rather than modulation of an independent mixing beam [54, 55].) The research covered in

this thesis builds upon and expands this early continuous-wave molecular modulation work of the

Yavuz group.

As a last note before discussing our research in detail, it is important to acknowledge that there

are other Raman-based modulation methods that will not be discussed in this thesis. Both our work

and the experiments discussed above are based on Raman scattering in molecular gases. However,

there are other Raman media that can be used for molecular modulation. Molecular modulation

techniques have been developed using diverse media such as solid hydrogen [56], photonic crystal

fibers [57], Raman-active crystals [58, 59], and phonons in semiconductors [60].
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Chapter 4

Molecular Modulation Experiment Overview

Before discussing our results, we present a detailed description of our experiment. The basic

components of our experiment are shown in Figure 4.1. Chapters 5 and 6 provide more details on

the locking circuitry and high-finesse cavity.

Our laser system begins with a custom-built external cavity diode laser (ECDL) at a wavelength

of 1064 nm that serves as our Raman pump laser. The external cavity is formed by a grating in

the Littrow configuration that provides optical feedback. The grating is mounted on a piezoelectric

transducer (PZT) and on actuators to allow for frequency tunability. We can choose the lasing

frequency by using the grating and the PZT to selectively feed that frequency back to the laser.

The optical power of the ECDL is around 20 mW, and its free-running full-width-half-maximum

linewidth is around 0.5 MHz. The ECDL beam goes through a Faraday isolator (not shown in

the figure) to prevent frequency-disrupting optical feedback, and then it is sent through an electro-

optic modulator (EOM). The EOM modulates the phase of the beam at 50 MHz. (The resulting

frequency sidebands are roughly 5 - 10 % of the intensity of the main beam.) This phase mod-

ulation is used to lock the laser to a high-finesse cavity (HFC). The beam is then used to seed a

ytterbium fiber amplifier (Yb FA) from IPG Photonics. The Yb FA amplifies the 5 mW of seed

power to 30 W of continuous-wave (CW) power. (See note at the end of this chapter.) The Yb FA

output is single mode spatially, single mode in frequency, and linearly polarized. After it passes

through another Faraday isolator (also not shown), a series of mode-matching lenses (MML, rep-

resented by a single lens in the schematic) shape the amplified beam to match the fundamental

Gaussian mode (TEM00) of the HFC. The HFC contains the dilute (0.1 - 0.5 atm) molecular gas
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Figure 4.1 Experiment Schematic We seed our experiment with a custom-built external cavity
diode laser (ECDL). The continuous-wave (CW) beam is modulated by an electro-optic

modulator (EOM) so that it can be used in a Pound-Drever-Hall locking scheme. The ECDL
output is on the order of 10 mW, and this seeds a ytterbium fiber amplifier (Yb FA). The output of
the Yb FA is up to 30 W of CW power in a single spatial mode and a single frequency mode. The

Yb FA output is coupled to a high-finesse cavity (HFC) using a mode-matching lens (MML).
Raman scattering in the HFC generates a Raman Stokes beam, which also resonates in the HFC.

A glass slide (GS) picks off part of the reflection from the cavity and sends the signal to the
locking circuit through a photodiode (PD). Further details are in the main text.

that serves as the Raman medium for our molecular modulator. Our Raman Stokes laser is gen-

erated from noise through stimulated Raman scattering of the pump beam inside the cavity. We

use the Pound-Drever-Hall (PDH) technique to lock the laser to one of the longitudinal modes of

the HFC [61]. In locking the laser to the cavity, we are effectively comparing the laser to a time-

average of itself (over the time it spends circulating in the cavity), and using feedback to keep the

laser self-consistent in the face of perturbations [62]. This locking keeps the laser on resonance

with the cavity, narrows its frequency linewidth, and allows for the build-up of the intense fields
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that are required to stimulate Raman scattering. A glass slide (GS) picks off part of the reflec-

tion from the input cavity mirror and sends it to a photodiode (PD). This signal is then sent to the

locking circuit. The following chapters describe the locking circuitry and the HFC in more detail.

Notes on Fiber Amplifier Power

Although the amplifier has a maximum output of 30 W, we cannot exceed 20 W for experiments

using linearly polarized light. With linearly polarized light, the optics must withstand twice the

output power of the fiber amplifier: both the incident beam and the beam reflected by the front

mirror of the cavity. Due to the high reflectivity of the cavity mirrors, this reflected beam is nearly

the same power as the incident beam. Our high-power Faraday isolator cannot handle the intensity

of two passes of a 30 W focused beam, so we must run our amplifier at a lower power.

When we use a circularly polarized beam, we use a quarter-wave plate right in front of the

cavity to circularly polarize the linear output of the amplifier. The reflected beam thus passes

through the quarter-wave plate twice. After this, the reflected beam is linearly polarized in a

direction perpendicular to the incident beam. This allows us to separate out this reflected beam

with polarization-dependent optics before it reaches the isolator. The isolator can withstand a

single pass of 30 W, so we can use full power for experiments with circularly polarized light.

As a final note, we have found that the output of the fiber amplifier changes noticeably depend-

ing on the output power. Both the mode quality and beam size change. The coupling to the cavity

is extremely sensitive to both of these parameters, so we attempt to keep them constant. To do

this, we always run the fiber amplifier at its full 30 W output, and then we cut down the power as

necessary. To do this, we use a half-wave plate and a polarizing beam cube to divert the excess

power into a high-power beam dump.
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Chapter 5

Resonance and Laser Locking

As mentioned in previous chapters, intense fields are required to stimulate the normally weak

process of Raman scattering. To get stronger Raman scattering and thus more efficient modulation,

CW modulation experiments have molecules inside high-finesse cavities. When light is resonant

with a high-finesse cavity, intracavity intensity builds up over time (10s of µs in our experiment),

and the field is effectively amplified. In this chapter we will discuss the concepts of resonance and

laser locking, which is the process of maintaining resonance. Chapter 6 will discuss cavities in

more detail.

To understand resonance, let us first consider a basic cavity that consists of two partially-

reflective, parallel planar mirrors, as shown in Figure 5.1. Each time a light ray encounters a

mirror, some light is transmitted, and some is reflected. The total light at any point is the sum

of all of these individual rays. Each ray takes a unique path, and therefore each accumulates a

unique phase, φ. If the rays are out of phase with one another as they exit the cavity, there can

be destructive interference, and thus little transmitted light. Resonance occurs when the phases

are such that the rays add constructively, and thus the maximum amount of light is transmitted.

(Although this discussion focused on ray optics and planar mirrors, the same principles hold for

more realistic Gaussian laser beams and more complicated mirror geometries. Gaussian beams

and mode-matching will be discussed in detail in Section 6.2.)

The phase-matching condition for resonance requires that the path difference between the dif-

ferent transmitted beams be equal to an integer number of wavelengths. For visible and near-

infrared light, wavelengths are on the order of 1 µm. This means that a change in cavity length of

250 nm (a quarter of a wavelength) changes the round-trip path difference inside the cavity by a



43

Figure 5.1 Cavity Resonance This basic cavity consists of two partially-reflective parallel planar
mirrors. With each encounter with a mirror, the ray is partially reflected and partially transmitted.

The incident ray is at an angle to make the individual rays easier to distinguish. The rays travel
different path lengths, and thus have different phases, φ, when they are eventually transmitted
through one of the mirrors. Depending on their relative phases, the rays add constructively or

destructively. The resonance condition is met when all of the transmitted phases on a side, φTR on
the right or φTL on the left, match so as to add constructively and produce the maximum

transmitted signal. The significance of the phase of the beam reflected before entering the cavity,
φREF , will be considered later; see Figure 5.5 and the surrounding discussion.

half of a wavelength. Such a half-wavelength shift is equivalent to a pi phase shift. This is the dif-

ference between perfectly constructive interference and perfectly destructive interference. Thus,

a 250 nm shift in cavity length can completely destroy resonance, and depending on the cavity

parameters, a much smaller change in length can significantly decrease the amount of transmitted

light. Additionally, any drift in laser wavelength over time, perhaps due to fluctuating temperature

or current, can take a laser out of resonance with the cavity. Due to the fragile nature of cavity

resonances, almost every real laser system requires some sort of feedback mechanism to maintain

resonance in spite of vibrations, temperature fluctuations, and other environmental perturbations.

We use the Pound-Drever-Hall technique to lock the pump laser to one of the longitudinal

modes of the cavity [61]. (A cavity mode is a laser oscillation that is supported by a cavity reso-

nance. A longitudinal mode, as opposed to a transverse mode, is a mode along the cavity, along the

direction of laser propagation. Chapter 6 discusses transverse cavity modes in more detail.) The
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idea behind any feedback technique is to monitor the output of the system, and then use that infor-

mation to adjust the input to get a more desirable output. With the PDH technique, the reflected

(or transmitted) light from the cavity is monitored. There are several possible input parameters one

can adjust. In our experiment, we have two feedback loops (which are described in more detail in

Section 5.2). One adjusts the current to the seed ECDL to compensate for “fast” fluctuations, in the

frequency range of around 100 Hz - 1 MHz. By adjusting the current, we can quickly make slight

changes to the laser wavelength, thus keeping it on resonance with the cavity. The other feedback

loop adjusts the voltage to a piezoelectric transducer (PZT) on one of the cavity mirrors that makes

small adjustments to the length of the resonance cavity. (The total translational range of one of

our cavity PZTs is 12 µm. The adjustments made are significantly smaller than this full range.)

This covers “slow” frequency fluctuations in the range of roughly DC - 100 Hz. The small changes

in cavity length change the resonance frequency of the cavity, again helping to keep the laser on

resonance. (Alternatively, we sometimes have our “slow” feedback loop adjust the voltage on the

PZT on the grating of our ECDL. This changes the cavity length of the ECDL cavity, shifting the

frequency of the laser to keep it on resonance.)

In the following section we will consider some of the concepts behind resonance, locking, and

the PDH method. We will conclude the chapter with a discussion of the specifics of our PDH

system in Section 5.2.

5.1 Resonance and the Error Signal

The ideas of resonance and the error signal are central to the PDH technique [62, 27]. As

discussed above, as we adjust the cavity length, the amount of light transmitted through the cavity

varies. Less light is transmitted when the different beams of Figure 5.1 interfere destructively.

More light is transmitted when the resonance condition is met and the beams add constructively.

Figure 5.2 gives a qualitative plot of cavity transmission as a function of cavity length. Note that

because laser frequency also influences the resonance condition, we get a qualitatively similar plot

if we plot cavity transmission versus laser frequency. The spacing between resonance peaks is
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called the free spectral range, νFSR, of the cavity, and it can be calculated with

νFSR =
c

2L
, (5.1)

where c is the speed of light in the cavity, and L is the length of the cavity.

Figure 5.2 Cavity Resonance Peaks The plot on the left displays the relationship between cavity
transmission and path length difference. Each time the path length difference of beams traveling
different number of round trips in the cavity is equal to an integer multiple of the wavelength of
the light, λ, the beams interfere constructively, and the cavity transmission reaches a maximum.
When the path difference is not an integer multiple of λ, the beams interfere destructively, and

less light is transmitted. The plot on the right, a plot of cavity transmission as a function of laser
frequency, yields qualitatively similar resonance peaks. n is any positive integer, and νFSR is the

free spectral range of the cavity.

Ideally, we could monitor the transmitted power, and use the feedback loops to ensure that

the power level remains constant at its maximum value. When environmental factors cause the

laser frequency to drift and resonance is lost, the power level drops. (The idea is exactly the

same for a change in cavity length, but for brevity we will discuss only a frequency drift here.)

The feedback to the laser current or the cavity PZT could then be adjusted to regain resonance.

In practice, however, this is difficult because of an ambiguity that stems from symmetry of the

situation. If the laser frequency drifts too high or too low, the transmitted power drops. It is

unclear whether the frequency needs to be decreased or increased to regain resonance. In order

to avoid this ambiguity, instead of monitoring the transmitted power as a function of the laser

frequency, we monitor transmitted power as a function of the derivative of laser frequency. As

shown in Figure 5.3, the derivative, known as the error signal, is asymmetric around the cavity

resonances. By monitoring this derivative we can tell whether the frequency has drifted too high

or too low.
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Figure 5.3 Error Signal This plot is the derivative of the plot on the right in Figure 5.2. It shows
the derivative of cavity transmission with respect to laser frequency, dT

dν
, as a function of laser

frequency, ν. This signal, known as the error signal, is useful because of its asymmetry around
resonances; the error signal indicates whether the laser has drifted to too high or to too low of a

frequency. The resonances here are the multiples of the free spectral range of the cavity, νFSR. n
is any positive integer.

To create and monitor the error signal (the derivative of the transmitted power) we slightly vary

the frequency periodically with time and see how the transmission responds. The frequency mod-

ulation from the EOM mentioned in Chapter 4 is the source of this periodic frequency variation.

The error signal is positive at frequencies just below a resonance and negative at frequencies just

above a resonance. As shown in Figure 5.4, this means that at frequencies just below a resonance

the transmitted intensity will vary in phase with frequency modulation. Just above a resonance, it

will vary π out of phase with the frequency modulation. Thus, a comparison of the phase of the

transmitted signal and that of the frequency modulation indicates whether the feedback needs to

increase or decrease the frequency of the laser to maintain resonance. Figure 5.4 is based on a

diagram by Black [62].

Before moving on, we should point out that we do not use exactly the method outlined above

in our experiment. We chose to describe the method above because it is a conceptually similar,

though perhaps slightly easier to understand, alternative to the method we use. The principles are
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Figure 5.4 Cavity Response to Frequency Modulation Depending on whether the frequency is
above or below a resonance, the transmission of the cavity responds either in phase or π out of

phase with a periodic modulation of the laser frequency. The arrows on the x-axis indicate
whether the modulation is decreasing (left plot) or increasing (right plot) the laser frequency. The
arrows near the resonance curve indicate the response of the cavity transmission in two regions:

when the frequency is below (shaded region) and above (unshaded region) resonance. Below
resonance, the response is in phase; when the modulation causes a decrease (an increase) in laser
frequency, there is a decrease (an increase) in cavity transmission. Above resonance, however, the

response is π out of phase; when the modulation causes a decrease (an increase) in laser
frequency, there is an increase (a decrease) in cavity transmission. νresonant is one of the laser

frequencies that is resonant with the cavity.

the same in both cases, and the conceptual arguments still hold. However, there are two main

differences between the method described and our method.

First, instead of monitoring pure cavity transmission (the right side of Figure 5.1), we monitor

the light that includes both the cavity transmission and the reflected signal (the left side of Figure

5.1). This changes the sign on a few aspects of the situation. See Figure 5.5 for a simplified

version of Figure 5.1 showing only relevant rays. Looking at the light that includes the reflected

signal, we observe resonance dips instead of resonance peaks. When the resonance condition is

met, the beams transmitted out of the left side of Figure 5.5 have traveled an integer number of

wavelengths inside the cavity. This means that the path difference adds an integer multiple of 2π

to their phase, which does nothing to change their phase relative to the incident ray. Thus, the only

phase difference comes from the π phase shift they pick up from a reflection off of the mirror on

the right (because nair < nmirror). The directly reflected signal experiences no phase difference

from its reflection because its reflection is occurring on the right side of the left mirror (inside the
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mirror substrate), and thus there is no phase shift (because nmirror > nair). Thus, on resonance,

there is a π phase difference between the promptly reflected beam and the beams transmitted from

the cavity. The beams destructively interfere, and there is a dip in the reflected signal. This dip

means that the positive and negative signs change in the discussion of phases in Figure 5.4 (because

the derivative for a dip is opposite in sign from that of a peak), but otherwise the argument remains

the same.

Figure 5.5 Cavity Resonance and Phase The simplified resonance diagram explains the phases of
the beams on the left side of the cavity. The reflected signal experiences no phase shift from its

reflection off of the right side of the left mirror (inside the mirror substrate) because
nmirror > nair, so it is in phase with the incident ray. On resonance, the transmitted signal

experiences a 2πm phase shift relative to the reflected signal due to a difference in path length.
(m is an integer.) The transmitted signal also experiences a π phase shift from its reflection off of
the left side of the right mirror because nair < nmirror. Thus, the phase of the transmitted signal is
2πm+ π, that is, π away from the phase of the reflected signal. Therefore, on resonance these two
signals interfere destructively and there is a dip in the amount of light on the left side of the cavity.

The second change from the scheme described above and our experiment is that instead of

varying the frequency of the beam in time, we modulate the phase of the beam with the EOM

to produce frequency sidebands. Let us consider this phase modulation from the EOM in the

frequency domain (rather than in the time domain as in Figure 5.4). Small periodic fluctuations of

frequency in the time domain are equivalent to adding sidebands in the frequency domain; this is

similar to the discussion of time-varying indices of refraction in Section 1.1. We generate the error
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signal by looking at the interference of these sidebands with the transmitted signal. The method

discussed in Figure 5.4 requires us to know something about the phase of the transmitted beam in

order to know whether we are above or below resonance. While we cannot directly measure the

phase of the electric field of the transmitted beam, we can measure the phase of the beat signal

from the interference of the transmitted beam and the sidebands. From this we can then extract the

needed information about the transmitted beam. Figure 5.6 illustrates a frequency space view of

how the sideband interference generates the error function.

Our description of the PDH technique has been mostly conceptual. Before moving on to discuss

the specifics of our PDH system, we note that a more mathematical description of the error function

and further conceptual discussion of the PDH method can be found in a helpful tutorial article by

Black [62], a chapter on stabilizing laser diodes to cavities by Fox, Oates, and Holberg [63], and

in the thesis of Green [25].

5.2 Our PDH System

Our PDH system uses optical feedback from our HFC to generate the error signal as described

in the previous section. We then use two feedback loops to keep the laser resonant with the cavity.

The schematic in Figure 5.7 illustrates the important elements of our PDH system.

We begin with a seed ECDL, and we phase modulate the beam using an EOM. This adds

frequency sidebands to our laser as shown in the call-outs in Figure 5.7. The EOM is driven by a

radio frequency generator (RFG) signal at 50 MHz. After the seed laser is amplified and coupled

to the HFC as described in Chapter 4, the reflected beam is sampled by the glass slide (GS), and

this signal goes to a photodiode (PD). As described in the previous section, this signal contains

the information necessary to create the error signal. The signal from the PD is filtered using a

DC block, and then the useful AC signal is amplified using a radio frequency (RF) amplifier. The

original RFG signal is split using a splitter; half is sent to the EOM as mentioned above, and the

other half is used as a reference. After being appropriately phase-matched using a phase delay line

(PDL), this reference signal is compared to the amplified PD signal using a mixer (MIX). (This

is the phase comparison discussed conceptually in Figure 5.4.) Our phase delay line is a length
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Figure 5.6 Sideband Interference and Cavity Resonance This figure suggests how interference
between frequency sidebands and the transmitted signal can create the error signal at the beat
frequency. (It is important that we are generating the error signal from a beat frequency. This

means that the form of the error signal comes only from the frequency drift and not from overall
fluctuations in the laser intensity.) The large central arrow in each case is the transmitted beam,

while the arrows on the left and right are the red and blue sidebands, respectively. The blue curve
shows a resonance dip of the cavity. The horizontal position of the arrow gives the frequency of

the beam. The sidebands are spaced from the transmitted beam by the EOM modulation
frequency, which is also the beat frequency. An arrow closer to resonance with the cavity is

thicker to represent its stronger signal. The direction of the arrow represents its relative phase. An
arrow pointing downward represents a π phase shift from an arrow pointing upward. Note that the

sidebands are generated with a definite phase relative to the transmitted signal and are π out of
phase with one another. (a) When the transmitted signal is on resonance, the red and blue
sidebands are of equal strength and π out of phase with one another. The two beat signals

(transmitted signal with red sideband and transmitted signal with blue sideband) cancel, yielding
zero error signal. (b) When the transmitted signal is slightly too high in frequency, the red

sideband is closer to resonance and thus is stronger than the blue. Thus, the in-phase red beat
signal dominates, meaning that the cavity transmission response is in phase with the modulation,
and the error signal is positive. (c) When the transmitted signal is slightly too low in frequency,

the blue sideband is closer to resonance and thus is stronger than the red. Therefore, the
π-out-of-phase blue beat signal is stronger, meaning that the cavity response is π out of phase

with the modulation, and the error signal is negative. Note the sign is different than in Figure 5.3
because we are now looking at a resonance dip (as on the left side of Figure 5.5) rather than a

transmission peak.

of BNC cable. Electronic signals travel through BNC at about 2
3

the speed of light, and thus at a
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Figure 5.7 PDH Schematic This schematic illustrates the important elements of our PDH locking
system. See the main text for a description of its function. The glowing red and blue lines are
lasers, and the thick black arrows indicated electrical signals. The call-outs with the arrows

illustrate how the EOM puts frequency sidebands on the incident beam. To simplify the
schematic, optical isolators and additional lenses are not shown. RFG: Radio Frequency

Generator, PDL: Phase Delay Line, MIX: Frequency Mixer, LPF: Low-Pass Filter, RF: Radio
Frequency Amplifier, DC: Direct Current Block, PD: Photodiode, GS: Glass Slide, MML:

Mode-Matching Lens, HFC: High-Finesse Cavity, PZT: Piezoelectric Transducer, LBS: Lock
Box for Slow Feedback, LBF: Lock Box for Fast Feedback, ECDL: External Cavity Diode Laser,

EOM: Electro-Optic Modulator, Yb FA: Ytterbium Fiber Amplifier

frequency of 50 MHz, the wavelength λ of the signal in the cable is

λ =
v

f

≈
2
3
c

50 MHz

≈ 3.8 m. (5.2)
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Using the fact that 3.8 m of BNC is roughly equal to λ or 2π of phase, we can add or subtract

length to adjust the phase of the reference signal. This phase control is needed because of the

unequal distances traveled by the two signals that are being compared at the mixer. (We optimize

this delay by adding and subtracting BNC cables in small increments until we see the error signal

take the expected form. See Section 3.2.2 of Green’s thesis for more details [25].)

The mixer gives the sum and the difference of its inputs: the amplified PD signal and the

reference signal. The difference output contains the beat information needed for locking, and so

we filter out the sum output using a low-pass filter (LPF). Thus, the mixer demodulates the reflected

beam signal, leaving us with only the useful error signal. This error signal is then sent to the servo

locking electronics, the lock boxes, to provide two different branches of feedback to keep the laser

on resonance with the cavity.

As described earlier in the chapter, one feedback branch handles the slow feedback, perturba-

tions from around DC - 100 Hz. This feedback servo (LBS) controls a PZT attached to one of the

mirrors of the HFC. It makes slight adjustments to the length of the cavity in order to keep the laser

on resonance. (We also occasionally instead use this slow feedback to adjust a PZT that adjusts

the length of the cavity in the ECDL. This adjusts the laser frequency, keeping it on resonance. In

principle, the HFC would be more stable without a PZT on one of its mirrors. The PZT introduces

additional mechanical resonances that must be avoided. However, we have so far found that the

ECDL PZT arrangement is not as stable as that with the HFC PZT. For now, the HFC PZT gives

us the flexibility we need to maintain resonance. The ECDL PZT is also necessary in experiments

in which we are locking two lasers to the cavity, as described in Section 11.1.) The PZT feedback

handles perturbations that occur on relatively long time scales, such as those due to temperature

drift and some mechanical disturbances and resonances.

The second feedback branch is tuned to provide fast feedback, from around 100 Hz - 1 MHz.

This servo (LBF) feeds back to the diode of the ECDL to modify its current. By making adjust-

ments to current on these short time scales, the feedback controls the laser frequency, keeping it on

resonance with the cavity. The current feedback is designed to deal with perturbations that occur
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on very short time scales, such as those due to fluctuations from the laser diode current source,

other electrical noise, and some higher frequency mechanical resonances.

In each of these feedback loops, the lock box modifies the input error signal so that the servo

responds in an appropriate manner at the design frequencies. The lock boxes adjust the gain and

phase of the input error signal, acting as a filter, amplifier, and attenuator. The response must

be frequency-dependent, and it must cover a wide range of input frequencies. Lock box design

is an involved process, and each feedback loop has different requirements and limitations that

require unique design solutions. It is necessary to avoid resonances (electrical and sometimes

mechanical) and positive feedback, both of which make it difficult to maintain resonance. Conflicts

often arise because multiple parameters must be optimized simultaneously. Successful lock box

design often requires much trial and error to discover the circuit parameters that produce the most

stable frequency.

The lock boxes used in the experiments described in this thesis were expertly designed and

built by Tyler Green. More detailed discussion of locking circuitry, detailed schematics of our

PDH circuits, and characterizations of our circuits can be found in Chapter 3 of his thesis [25].
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Chapter 6

Optical Cavities

In this chapter, we will examine beam propagation and optical cavities in more detail. In

Chapter 5, we examine a basic cavity model using flat mirrors and light rays as shown in Figure

5.1. However, optical cavities are often more complicated than this. In this chapter, we will first

briefly overview Gaussian beam propagation and mode-matching to cavities. We will then discuss

the details of the custom-built high-finesse cavity used in our experiment.

6.1 Gaussian Beam Propagation

In order to get a more accurate picture of the behavior of laser light, we must move beyond the

ray optics description of Chapter 5. If we take into account the wave nature of light and diffraction

effects, we arrive at the more accurate representation of light as a Gaussian beam [27]. Gaussian

beam propagation is based on the paraxial wave equation, which assumes that light travels roughly

like a beam, that it stays reasonably close to some optical axis. For laser light this is almost

always a good assumption; the transverse dimensions of the field vary slowly as a function of the

propagation distance.

Gaussian beam propagation accounts for the spatial extent and the complex phase of a laser

beam. At any given point along the propagation direction z, a Gaussian beam is characterized by

a complex radius of curvature, q(z), which takes into account both the transverse beam size w(z)

and the radius of curvature of the wavefront R(z).

1

q(z)
≡ 1

R(z)
− j λ

πw2(z)
, (6.1)
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where λ is the wavelength of light in the medium and j is the imaginary unit. We call the location

where the beam is the smallest the beam waist, w0.

w(z)min ≡ w0 (6.2)

Figure 6.1 illustrates the propagation of a Gaussian beam in free space (or another uniform

medium). The waist has been marked, and the dotted lines represent the radii of curvature of the

wavefront of the beam at various points.

Figure 6.1 Gaussian Beam Propagation This figure illustrates the propagation of a Gaussian
beam in free space (or another uniform medium). The solid lines mark the 1

e2
size of the Gaussian

beam, w(z), and the dotted lines show the radius of curvature of the wavefront, R(z), at selected
points. The waist, w0, is the point at which the beam size is smallest. The Rayleigh range, zR, is

the range over which the beam travels before doubling in area.

Note that the radius of curvature of the wavefront is infinite at the beam waist. The Rayleigh

range of a Gaussian beam, zR, is the range over which the beam travels before diverging so that its

area doubles (or, equivalently its diameter increases by
√

2). The Rayleigh range can be calculated

from the laser parameters as follows:

zR ≡
πw2

0

λ
. (6.3)
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This definition allows us to describe Gaussian beam propagation in free space with relatively

compact relationships. In each case, we define z = 0 to be the location of the beam waist.

q(z) = z + jzR (6.4)

w(z) = w0

√
1 +

( z
zR

)2

(6.5)

R(z) = z +
z2
R

z
(6.6)

Although these quantities will suffice for our exploration of Gaussian beams, the entire complex

field of the Gaussian beam, U(x, y, z), can also be expressed in terms of these variables.

U(x, y, z) =

√
2

π

1

w(z)
e−jkz+jψ(z)e

−x
2+y2

w2(z)
−jk x

2+y2

2R(z) , (6.7)

where k = ω
c

is the wave number and ψ(z) is defined as

ψ(z) ≡ tan−1
( z
zR

)
. (6.8)

See Chapters 16 and 17 of Lasers by Siegman for more details on Gaussian beam propagation

[27].

6.2 Optical Cavities and Mode-Matching

The last section discussed Gaussian beams in free space, but often we need to manipulate the

size and shape of the beams with optics. In Chapter 5, we discussed the importance of locking for

keeping the laser resonant with the cavity. In order to achieve resonance in the first place, we must

make our Gaussian beam the correct size and shape to “fit” well with the cavity, that is, to strongly

resonate in a cavity mode. The process of achieving this resonance is called mode-matching.

As discussed in Figure 5.2, resonance in ray optics requires specific cavity lengths (or, equiv-

alently, laser frequencies). With the more complete Gaussian beam description, we see that there

are other requirements as well. In Chapter 5, we discussed resonance in terms of constructive in-

terference. The transmitted beams that travel different numbers of round trips in the cavity must

be in phase with one another. This phase requirement can be thought of in terms of the shape of
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the laser field. After one full round trip in the cavity, the field must return to its original shape so

that it begins its next trip in unison with the light just entering the cavity. In this way, light on its

first trip adds constructively with light on its second trip, and its third trip, and so on, and we get

constructive interference, resulting in large intracavity fields.

This same resonance requirement holds for Gaussian beams. After each round trip the fields

must add constructively, though now we have the added complexity of the Gaussian wavefronts

discussed in Section 6.1. In addition to the cavity length requirement, there is now the requirement

that the radius of curvature of the mirrors must match the radius of curvature of the wavefront.

Matching the mirrors to the wavefront ensures that the beam reflects exactly back on itself after

each round trip of the cavity. We call configurations where such constructive interference occurs

cavity modes. Figure 6.2 illustrates a basic example of cavity resonance with a Gaussian beam.

Figure 6.2 Gaussian Beam in a Cavity This figure illustrates a Gaussian beam resonating in an
optical cavity consisting of two mirrors, M1 and M2. At the location of the each mirror, z1 and z2,
the radius of curvature of the beam, R(z), matches the radius of curvature of the mirror, RM1 and

RM2. The length of the cavity is L. w1 and w2 are the beam sizes at the two mirrors.

As mentioned above, mode-matching can be achieved by matching the cavity mirrors to the

radius of curvature of a beam. However, this is often impractical. It is almost always the case

that instead the Gaussian beam is manipulated to match a cavity with a predetermined length and

mirror radii of curvature. These three cavity parameters completely specify the beam that will best
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resonate in a cavity. We combine these parameters to define

g1 ≡ 1− L

RM1

(6.9)

and

g2 ≡ 1− L

RM2

. (6.10)

These g parameters help to compactly express cavity resonance parameters [27]. First of all,

the g parameters specify where along the optical axis the mirrors should be located. The locations

are given relative to the cavity waist location, that is, using coordinates with an origin defined by

w(z = 0) = w0.

z1 =
g2(1− g1)

g1 + g2 − 2g1g2

L (6.11)

z2 =
g1(1− g2)

g1 + g2 − 2g1g2

L (6.12)

The beam size that will best resonate with the cavity can also be described by these parameters.

The waist size and the beam size at the two mirrors, w1 and w2, can be calculated as shown in

Equations 6.13 - 6.15.

w2
0 =

Lλ

π

√
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
(6.13)

w2
1 =

Lλ

π

√
g2

g1(1− g1g2)
(6.14)

w2
2 =

Lλ

π

√
g1

g2(1− g1g2)
(6.15)

Finally, the Rayleigh range of the resonant beam can also be calculated using

z2
R =

g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
L2. (6.16)

In Figure 6.2, the cavity was drawn symmetrically, with equally curved mirrors, and this puts

the waist in the center of the cavity. This is not the case for all cavities. There are many configura-

tions that support stable cavity modes: asymmetric cavities, cavities with the waist located at one

of the mirrors, and even cavities with the waist located outside of the cavity. Figure 6.3 shows a

few of the stable linear cavity configurations.
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The forms of Equations 6.13 - 6.15 hint at the stability criteria for a stable optical cavity. The

term under each radical is positive, and thus the beam sizes are real-valued, only if

0 ≤ g1g2 ≤ 1. (6.17)

Equation 6.17 shows the stability criteria for an optical cavity. Note that this equation, and most

of the previous discussion of cavities, is specific to linear cavities, those with two mirrors facing

one another. Although they will not be discussed here, other cavity geometries with more mirrors

exist, such as ring cavities [27].

Figure 6.3 Stable Cavity Configurations This figure illustrates several stable cavity configurations
that support Gaussian beam cavity modes: (a) Asymmetric Cavity, (b) Plano-Concave Cavity, and
(c) Convex-Concave Cavity. w0 indicates the cavity waist in each case. Note that in (b) the waist

is located at one of the cavity mirrors, and in (c) the waist is located outside of the cavity.

In our experiment, we have a symmetric cavity, which is described in detail in Section 6.3. For

this type of cavity, or for any type of stable cavity, we can use the equations above to calculate the

profile of a resonant Gaussian beam. The challenge is then to get an arbitrary laser beam to assume

the desired form so that it will properly resonate. One way of to change a Gaussian beam size is

to use a convex lens to focus it. Concave lenses can also be used to make a beam diverge more

quickly. Another parameter that one can change is the distance of propagation between optical

elements. By allowing a beam to propagate more or less before it encounters a lens, we can change

both the size and the radius of curvature of the incident beam, and this changes the effect the lens

has on the beam. There are also prism pairs and cylindrical lenses to change the cross-sectional

aspect ratio of beams to make them more (or less) symmetric. Through some combination of

lenses and free space propagation, the correct Gaussian profile for a given resonator can usually be
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achieved. A final, perhaps subtle note is that the input cavity mirror itself can have a lensing effect

on the beam, so it must be included in any mode-matching calculations.

Beam propagation and mode-matching calculations for Gaussian beams are made much easier

by the ABCD matrix method [27]. Each optical element, interface, or free space propagation dis-

tance encountered by a Gaussian beam can be represented by an ABCD matrix. The matrix repre-

sents how the beam is changed by the encounter. For example, if an incident Gaussian beam with

complex radius of curvature qi encounters an optical element with the following generic ABCD

matrix:  A B

C D

 , (6.18)

then the final complex radius of curvature of the beam leaving the optical element, qf , can be

calculated using
qf
nf

=
A qi
ni

+B

C qi
ni

+D
, (6.19)

where ni and nf are the indices of refraction of the media that the incident and final beams are in.

ABCD matrices for free space propagation and thin lenses are given in Equations 6.20 and 6.21.

Free Space Propagation of Distance d 1 d

0 1

 (6.20)

Thin Lens of Focal Length f 1 0

− 1
f

1

 (6.21)

These matrices assume that the beam is incident at a right angle to the optical element. An article

by Massey and Siegman provides ABCD matrices for tilted optics [64].

The power of the ABCD matrix method comes from its ease of use with complex optical sys-

tems. To calculate the net result of the system, the matrices from the individual elements can be

multiplied together (with the first element encountered furthest to the left and matrices of the sub-

sequent elements multiplied on the right side), and then use Equation 6.19 with the resulting matrix

to get the net effect of the entire optical system.
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The ABCD matrix method lends itself well to computer calculations. While many programs

could be used, we used MathWorks Matlab to develop a program to simulate the Gaussian beam

size of a laser as it goes through an optical system. Our program uses the ABCD matrix method

to calculate q(z) throughout the optical system, and then it plots w(z), the beam size. Figure 6.4

shows a sample output. The goal is to find an optical system that manipulates the beam so as

to match it to the ideally resonant cavity mode, as described by Equations 6.13 - 6.15. The free

parameters of lens focal lengths and propagation distances between lenses are adjusted until a near

match is found. Although we use this program to aid in mode-matching to the cavity, we have

found that it is still necessary to make slight adjustments based on empirical evidence in order to

optimize coupling.

Figure 6.4 ABCD Matrix Simulation This figure displays a simulation of Gaussian beam
propagation calculated using our ABCD matrix Matlab program. The diagram on the left shows
the beam being mode-matched to the cavity using several lenses. The diagram on the right is a

detailed version of just the region around the cavity. In both diagrams, the blue line indicates the
1
e2

beam size of a Gaussian beam. The dashed vertical lines indicate the location of optical
elements. The green dashed lines are lenses, and the two black lines on the right of each diagram
are the cavity mirrors. The curved dashed red lines indicate the ideal cavity mode for the given
cavity. In the drawing on the right, the thin horizontal and vertical dashed lines mark the size of

the cavity waist and the location of the cavity waist. The blue dashed lines match up with the
calculated beam size, and the red dashed lines match up with the ideal cavity mode. (To make this

more apparent, the calculated beam size here is intentionally different from the cavity mode.)

Before moving on to discuss the specifics of our cavity, we will mention two other quantities

associated with Gaussian beams in cavities: higher-order transverse Gaussian modes and finesse.
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In all of the previous discussion, we have assumed our beam had a Gaussian cross-section in

both the transverse directions. However, this is only one solution to the paraxial wave equation.

An infinite number of higher-order solutions exist. These higher-order transverse modes are called

Hermite-Gaussian modes. (In general, Transverse Electro-Magnetic modes are often referred to

as TEM modes, with the lowest-order mode being TEM00. See Figure 6.5.) For a beam traveling

in the z direction, the general Hermite-Gaussian modes are described as follows [27].

E(n,m, x, y, z, λ) = u(n, x, z, λ) · v(m, y, z, λ), (6.22)

where

u(n, x, z) ≡
( 2

π

) 1
4
(

2nw(z)n!
)− 1

2
Hn

(√
2x

w(z)

)
e
− x2

w2(z) ejΦ(n,x,z,λ), (6.23)

and v(m, y, z, λ) is identical to u(n, x, z, λ) with y taking the place of x and m taking the place of

n. n and m are indicies that give the order of the Hermite-Gaussian mode in the x and y transverse

directions, respectively. w(z) is the beam size at location z along the propagation direction. λ is

the wavelength of light. Hn is the nth-order Hermite polynomial, and Φ is a phase term. A few

Hermite-Gaussian modes are illustrated in Figure 6.5.

We will continue to look at only the lowest-order transverse mode for the rest of this thesis. The

lowest-order beam is desirable for our experiment because it couples best to the cavity. Although

the higher-order Gaussian modes are quite interesting, we usually only see them when our lasers

are incompletely mode-matched to our cavity. We will not discuss them further here.

We conclude this chapter with a short discussion of finesse. Finesse is an important way to

characterize an optical cavity. As mentioned in Section 2.2, the finesse of a cavity can be thought

of as how well it holds light. Light in a cavity with a high finesse will reflect back and forth for

many round trips before it is all transmitted through the cavity mirrors. Roughly, the finesse is how

many round trips light makes before exiting the cavity. More specifically, finesse is defined as

F ≡
π
√
grt

1− grt
, (6.24)

where grt is the round-trip gain in the cavity. The round-trip gain accounts for any gain medium that

may be in the cavity, but also for all loss mechanisms, including absorption and light lost through
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Figure 6.5 Transverse Electro-Magnetic Modes This figures shows a cross-sectional view of the
lowest-order Gaussian mode (n = m = 0) as well as several higher-order Gaussian modes. These
Transverse Electro-Magnetic modes are often labeled TEMnm. This is a plot of beam intensity,

which was obtained by taking the square of the magnitude of the electric field (Equation 6.23). A
lighter color indicates a more intense beam. The horizontal and vertical axes of each square are

the spatial coordinates in the x and y transverse directions.

transmission through the cavity mirrors. For low-loss cavities with high-reflectivity mirrors such

as the one used in our experiment, grt is very close to 1. Thus, 1 − grt approaches zero, and F is

very large.

The high finesse of our cavity is important because it allows us to build up high-intensity fields.

Because our mirrors are highly-reflective and our losses are low, light in the cavity travels many

round trips before exiting the cavity. The entire time this light is circulating in the cavity, more

light is entering the cavity. Thus, over time (10s of µs), this light builds up, and intense fields

circulate in the cavity.

As suggested by Figure 6.6, a very high finesse also means very sharp resonance peaks. A sharp

resonance means that there is a very small range of frequencies for which light is resonant with

the cavity. This means that cavity modes have narrow frequency linewidths, which is beneficial for

producing narrow linewidth lasers. It also means that high performance feedback electronics are
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required to maintain resonance, as a slight variation in frequency will cause a significant drop in

transmission. (See Chapter 5 for further discussion of locking.)

Finally, we note the connection of finesse to the discussion of resonance of Section 5.1. Another

approximately equivalent way of defining finesse is

F ≡ νFSR
∆νcav

, (6.25)

where νFSR is the free spectral range of the cavity as defined in Equation 5.1, and ∆νcav is the

full-width-half-maximum frequency linewidth of the cavity resonance peaks. (This linewidth is

the frequency range around a resonance peak over which a cavity has at least half its maximum

transmission.) Figure 6.6 illustrates this view of finesse.

Figure 6.6 Finesse Figure (a) illustrates the two quantities that define finesse, F : free spectral
range, νFSR, and full-width-half-maximum cavity linewidth, ∆νcav. Figure (b) displays resonance

curves for cavities of varying finesse. The cavity represented by the topmost, red curve has a
finesse of F . The second-highest, blue curve represents a cavity with a finesse of 2F . The

second-lowest, green curve represents a cavity that has a finesse of 5F . The cavity represented by
the lowest, magenta curve has a finesse of 100F .

See Chapter 19 of Lasers by Siegman for more details on Gaussian beam modes and optical

cavities [27].

6.3 Our Liquid-Nitrogen-Cooled HFC

The cavity that serves as the centerpiece of our experiment, our molecular modulator, is a

symmetric cavity, similar to the cartoon cavity depicted in Figure 6.2. Both mirrors have a radius
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of curvature of 100 cm and the length of the cavity is 75 cm, which yields a free spectral range

of 200 MHz. The mirrors, purchased from Precision Photonics, have low-loss, high-reflectivity

dielectric coatings. The coatings have a large CW optical damage threshold; they can handle

laser intensities exceeding 20 MW/cm2 before sustaining damage. The mirrors have extremely

high reflectivity near the pump (1064 nm) and vibrational Stokes (1560 nm) wavelengths. The

reflectivity is 99.99% or higher for wavelength ranges of around 1010 nm - 1150 nm and around

1430 nm - 1620 nm. The manufacturer quotes the absorptive and scattering losses as being at the

100 parts per million (ppm) level for both the pump and the vibrational Stokes wavelengths. We

measure the transmittance to be 32 ppm at the pump wavelength and 38 ppm at the vibrational

Stokes wavelength. Because there is no gain medium, from these values we can calculate the

round-trip gains for both beams in (an empty) cavity.

grt = 1− losses

gpumprt = 1− 32

106
− 100

106

gpumprt = .999868 (6.26)

and

gStokesrt = 1− 38

106
− 100

106

gStokesrt = .999862 (6.27)

With these round-trip gains, we can use Equation 6.24 to calculate the finesse at the two wave-

lengths.

Fpump = 23798 (6.28)

FStokes = 22764 (6.29)
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Using Equation 6.25 with these finesse values and the aforementioned free spectral range of

200 MHz, we can calculate the full-width-half-maximum cavity linewidths.

∆νcav =
νFSR
F

∆νpumpcav =
200 MHz

22764

∆νpumpcav = 8.786 kHz (6.30)

and

∆νStokescav =
200 MHz

20942

∆νStokescav = 9.550 kHz (6.31)

For comparison, we note that in modulation experiments with optical fibers as the Raman

medium, the Stokes sideband often has a bandwidth of order of the full-width-half-maximum

linewidth of the Raman transition, about 500 MHz. However, because our Raman medium is

inside a HFC, the cavity linewidth acts as a frequency filter, and our Stokes beam has a full-width-

half-maximum linewidth on the order of 10 kHz.

As shown in Figure 6.7, the cavity is enclosed inside a custom-made vacuum chamber. The

chamber is made of stainless-steel, and the inner tube that contains the cavity and the molecular gas

has a diameter of 5 cm. The central 45-cm-long region of the chamber is surrounded by a liquid

nitrogen reservoir. The reservoir is wrapped in a 2 cm-thick layer of highly-insulating aerogel to

reduce water-vapor condensation on the optics and table and to prevent rapid evaporation of the

liquid nitrogen. The chamber has two end pieces that are removable and are designed to mate with

standard Kwik-Flange vacuum flanges. These end pieces house the mirrors of the cavity as well

as anti-reflection-coated, vacuum-tight windows. One of the mirrors is mounted on a piezoelectric

transducer (PZT) that allows slight adjustments of the cavity length. We attach the end pieces to

the main chamber with custom end clamps and a Viton o-ring. Six bolts in each clamp allow for

precision control of the pitch of the end pieces (and therefore the mirrors) within 1 milliradian. By

adjusting the tightness of these bolts, the cavity can be aligned while maintaining the vacuum seal.

We have found it necessary to be able to make these pitch adjustments. Although the chamber

was accurately machined, cooling the system with liquid nitrogen results in undesired structural
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changes for which precision alignment compensation is necessary. See Appendix E for more

details on the cavity and chamber.

Figure 6.7 Cavity Diagram This custom-designed 75-cm-long stainless-steel vacuum chamber
houses the high-finesse cavity used in our experiment. (The drawing is to scale). The central
cavity contains the cavity mirrors and the molecular gas. Surrounding the cavity there is an

insulated 45-cm-long liquid nitrogen reservoir. (The insulation is not shown.) The end clamps
hold the end pieces in place, maintaining the vacuum, while the end pieces themselves hold the

cavity mirrors and anti-reflection-coated chamber windows. One of the end pieces also houses the
piezoelectric transducer (PZT) that allows for slight adjustments of the cavity length. We align

the cavity mirrors by making slight adjustments to the six end-clamp-tightening bolts. This allows
us to change the pitch of the mirrors while maintaining a vacuum seal. Not shown are the three

dial indicators per end piece that record its pitch. See Appendix E for more details.

Inside the cavity, we have a molecular gas (either hydrogen, H2, or deuterium, D2), typically

with a pressure of 0.1 - 0.5 atm. This pressure is about an order of magnitude lower than the pres-

sures used in previous stimulated Raman scattering experiments [50, 55]. This is notable because

dispersion and phase mismatch between Raman sidebands are reduced at such low pressures. The

lower pressures also help to reduce significant pressure broadening that could increase the narrow

linewidth of the two-photon transition.

Cooling the cavity with liquid nitrogen causes significant difficulties. In addition to the cavity

misalignment due to temperature mentioned above, the constant boiling of the nitrogen also causes

problems. The constant boiling means not only that the reservoir must be replenished frequently,

but also that there is a perpetual source of mechanical perturbations to the cavity, which make it

significantly more difficult to keep the laser on resonance with the cavity. Despite these challenges,
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it is beneficial to keep the chamber at liquid nitrogen temperatures. The first benefit is due to the

Boltzmann distribution of molecular states. In our experiment, we build-up coherence by driving

two-photon transitions between the states. For most of our experiments these transitions begin

in the ground vibrational or rotational state. We can build a stronger coherence if we cool the

molecules so that we begin with a larger percentage of the population in this ground state.

We can find the ratio of populations in two states with energies E1 and E2 using the relation

P1

P2

=
g1e
−E1
kT

g2e
−E2
kT

=
g1

g2

e
E2−E1
kT

=
g1

g2

e
h∆ν
kT , (6.32)

where Pi is the population in the ith state, h is Planck’s constant, k is the Boltzmann constant,

T is the temperature, gi is the degeneracy of the ith state, and ∆ν is the frequency difference

corresponding to the energy splitting between the two levels.

The two Raman media used in our experiment are molecular deuterium (D2) and molecular

hydrogen (H2). Some relevant frequency separations are shown in Table 6.1. The calculations,

which follow those of Herzberg [65], are explained in more detail in Appendix F.

Note that the selection rules for the Raman transitions are [65]

∆v = ±1 and ∆J = 0 or ± 2. (6.33)

Let us return to Equation 6.32 and use the ∆ν values from Table 6.1. If we do so, we see

that the change from room temperature (300 K) to liquid nitrogen temperature (77 K) is not very

important for the vibrational populations. (There is no degeneracy for the vibrational states, so

gv=n = 1 for all n.) For deuterium molecules in the rotational ground state J = 0, the ratio
Pv=0

Pv=1
is around 1.7 × 106 at 300 K and 1.8 × 1024 at 77 K. For hydrogen, the ratio is 4.6 × 108 at

300 K and 5.7 × 1033 at 77 K. Although there is definitely a significant difference in the relative

populations between the two temperatures, at either temperature the molecules are overwhelmingly

in the ground state, v = 0. The first excited state, v = 1, though it is the second most populated
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Molecule Transition Transition Type Transition Frequency, ∆ν

|v = 0, J = 0〉 → |v = 1, J = 0〉 vibrational 89.6 THz

D2 |v = 0, J = 0〉 → |v = 0, J = 2〉 rotational 5.4 THz

|v = 0, J = 1〉 → |v = 0, J = 3〉 rotational 8.9 THz

|v = 0, J = 0〉 → |v = 1, J = 0〉 vibrational 124.7 THz

H2 |v = 0, J = 0〉 → |v = 0, J = 2〉 rotational 10.6 THz

|v = 0, J = 1〉 → |v = 0, J = 3〉 rotational 17.6 THz

Table 6.1 Deuterium and Hydrogen Transition Frequencies This table gives the frequencies ∆ν
of relevant vibrational and rotational transitions in molecular deuterium (D2) and hydrogen (H2).
v is the vibrational quantum number, and J is the rotational quantum number. See Appendix F for

the details of these calculations.

state, has a comparatively extremely small population at both temperatures for both molecules.

Higher-order excited vibrational states have even lower relative populations. Thus, the population

is overwhelmingly in the ground state for either room temperature or liquid nitrogen temperature,

and the cooling has little noticeable effect on the vibrational quanta.

The same cannot be said about the rotational quanta. As seen in Tables 6.1, F.2, and F.3, the

rotational frequency spacings are much smaller than the vibrational spacings. We can use Equation

6.32 and the frequency spacings listed in the tables in Appendix F to calculate the relative popu-

lations of the first rotational excited states. This is the same as the above vibrational calculation

with one change. With the rotational states, we have to account for the 2J + 1 degeneracy of the

J th rotational level. gJ=0 = 1 and gJ=1 = 3, so we have a factor of 1
3

when calculating PJ=0

PJ=1
.

For deuterium, this ratio is around 0.4 at 300 K and 1.0 at 77 K. For hydrogen, the ratio is 0.6

at 300 K and 3.0 at 77 K. Thus, at room temperature the population in the first excited rotational

state is noticeably higher than that of the ground state, by approximately a factor of two for both

molecules. However, by cooling the molecules to liquid nitrogen temperatures, we increase the

ground state population and make it the most populated state. This means we have more molecules

involved in the desired Raman process.
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The affect of temperature can be further illustrated by examining the overall population dis-

tribution. The Boltzmann distribution discussed in Equation 6.32 also allows us to calculate the

percentage of the overall molecular population that is in the nth rotational state given a temperature

T .
Pn
Ptotal

=
(2n+ 1) e−

hνn
kT

∞∑
j=0

(2j + 1) e−
hνj
kT

, (6.34)

where νj is the frequency separation between the ground state and the jth state. Figure 6.8 displays

the percentages of the overall population that are in the lowest several rotational states at room

temperature and at liquid nitrogen temperatures for both D2 and H2.

Figure 6.8 Rotational Level Populations This figure shows the percentages of the overall
population that are found in the lowest several rotational states for the vibrational ground state.

For both molecules at both temperatures the population percentages for excited vibrational states
(not shown) are negligible. The larger energy spacing between states in hydrogen leads to lower

populations in excited states. Note how cooling to liquid nitrogen temperatures significantly
increases the populations in the lower states, which are the states used in our experiments.

In addition to the benefit of having more molecules in the proper quantum states, liquid nitrogen

cooling narrows the linewidth of the Raman transition. Narrowing the linewidth of the transition

means that more of the molecules are on resonance for any given frequency around the peak of
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the resonance curve. Just as getting more molecules in the lower states increases the desired

interaction of the laser and the molecules, a tighter grouping of resonances, that is, a narrower

linewidth, increases the laser-molecule interactions. With more molecules on resonance, the gain

of the Raman process is effectively increased, as the interaction is proportional to the number of

participating molecules. Figure 6.9 illustrates this narrowing.

Figure 6.9 Transition Linewidth and Temperature This figure illustrates how cooling to liquid
nitrogen temperatures narrows the linewidth of a Raman transition. Doppler and pressure

broadening linewidths scale as the square root of temperature. Although the horizontal scale is
arbitrary, it shows how the linewidths decrease by roughly a factor of two (by a factor of√
300
77
≈ 1.97) when the temperature is decreased from 300 K to 77 K. Cmax and Hmax are the

maximum effective gains for cold and hot molecules, respectively. (These values are not
necessarily the same for the two broadening mechanisms.) ∆νC and ∆νH are the

full-width-half-maximum linewidths for cold and hot molecules, respectively. The subscript D
refers the Doppler profile, which is inhomogeneous and therefore Gaussian. The subscript P

refers to the pressure broadening profile, which is homogeneous and therefore Lorentzian. νR is
the frequency of the Raman transition.

The temperature change affects the Raman linewidth by influencing both the Doppler linewidth

and the pressure broadening linewidth. The total linewidth of the Raman transition (the Voigt pro-

file) is given by the convolution of these two broadening mechanisms. (Single-photon transitions

between the upper and lower Raman states are dipole forbidden, and the upper state is metastable.

Thus, the lifetime is long, so lifetime broadening effects are small, and we will ignore them.)

Colder molecules move more slowly, which means the light they encounter has a smaller range

of Doppler frequency shifts. This means they have a smaller spread of resonance frequencies, that
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is, a narrower Doppler linewidth. Equation 6.35 shows the relationship between the full-width-

half-maximum Doppler linewidth ∆νD and temperature, T . (See Section 30.3 of Siegman [27].)

∆νD = νR

√
8 ln 2

kT

mc2
(6.35)

νR is the frequency of the Raman transition, and m is the mass of the molecule. k is the Boltzmann

constant and c is the speed of light. Figure 6.9 illustrates the affect of temperature on Doppler

linewidth.

Using the frequencies from Tables 6.1, F.2, and F.3, we can calculate the Doppler linewidths

and see the narrowing benefit of liquid nitrogen cooling. Table 6.2 displays the full-width-half-

maximum Doppler linewidths for a few relevant Raman transitions.

Molecule Transition ∆νD at T = 300 K ∆νD at T = 77 K

|v = 0, J = 0〉 → |v = 1, J = 0〉 556 MHz 282 MHz

D2 |v = 0, J = 0〉 → |v = 0, J = 2〉 32 MHz 17 MHz

m = 4 amu |v = 0, J = 1〉 → |v = 0, J = 3〉 55 MHz 28 MHz

|v = 0, J = 0〉 → |v = 1, J = 0〉 1094 MHz 554 MHz

H2 |v = 0, J = 0〉 → |v = 0, J = 2〉 93 MHz 47 MHz

m = 2 amu |v = 0, J = 1〉 → |v = 0, J = 3〉 154 MHz 78 MHz

Table 6.2 Temperature Dependence of Doppler Linewidths of Raman Transitions This table gives
the full-width-half-maximum Doppler linewidths ∆νD of relevant vibrational and rotational

transitions in molecular deuterium (D2) and hydrogen (H2). This highlights one of the advantages
of working at liquid nitrogen temperatures: narrower Raman linewidths. The narrower linewidths

are an effective increase in gain for our Raman processes, as they increase the number of
molecules that see a given laser frequency as resonant.

The change in temperature also affects the Raman linewidth through changes in pressure broad-

ening. Pressure, and thus pressure broadening, comes from molecular collisions. If we assume that

the collisional cross-section of the molecules is constant with changing temperatures, which is a

fairly reasonable assumption, the temperature dependence of molecular collisions comes from the



73

change in speed of the molecules. The collisional rate is approximately proportional to transla-

tional molecular speed. Molecular speed is proportional to the square root of kinetic energy, and

energy is in turn proportional to the temperature. Thus, the collisional rate and pressure broadening

is approximately proportional to the square root of temperature.

∆νP ∼ Rcollisions ∼ σcollisions · v

and v ∼
√
Ekinetic ∼

√
kT

=⇒ ∆νP ∼
√
T (6.36)

In the above expressions, ∆νP is the linewidth due to pressure broadening, and Rcollisions and

σcollisions are the rate and cross-section of molecular collisions, respectively. v is the molecular

speed; Ekinetic is the kinetic energy; k is the Boltzmann constant; T is the temperature.

Therefore, just as with Doppler broadening, the linewidth is proportional to the square root

of temperature, and cooling to liquid nitrogen temperatures decreases the pressure broadening

linewidth by nearly a factor of two, as shown in Figure 6.9.

√
300 K

77 K
≈ 1.97 (6.37)

We can also use the fact that ∆νP ∼
√
T to extrapolate from room temperature data and see

how the pressure broadening coefficient, σP , changes when the cavity is cooled to liquid nitrogen

temperatures. σP is a measure of how ∆νP changes as a function of pressure. Table 6.3 displays

the pressure broadening coefficients at liquid nitrogen temperatures. ∆νP can be estimated by

multiplying these σP values by the molecular pressure used in the experiment. (σP is the slope of

∆νP as a function of P . This functional relationship is close to linear at the pressures at which

our experiments are typically performed. Note that this approximation ignores the offset from

the nonzero y-intercept of this line, which is small.) The room temperature values come from

the literature: rotational data - [66], vibrational data D2 - [67], vibrational data H2 - [68], general

information, notation, and additional rotational data - [69]. (The units of some of the literature

values have been changed for clarity of comparison.)
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∆νP is proportional to
√
T , and from the ideal gas law, pressure P is proportional to T (as-

suming constant number density). Thus σP , which is the change in ∆νP over the change in P , is

proportional to
√
T
T

= 1√
T

.

Molecule Transition σP at T = 300 K σP at T = 77 K

|v = 0, J = 0〉 → |v = 1, J = 0〉 213 kHz / torr 415 kHz / torr

D2 |v = 0, J = 0〉 → |v = 0, J = 2〉 162 kHz / torr 316 kHz / torr

|v = 0, J = 1〉 → |v = 0, J = 3〉 108 kHz / torr 210 kHz / torr

|v = 0, J = 0〉 → |v = 1, J = 0〉 86 kHz / torr 168 kHz / torr

H2 |v = 0, J = 0〉 → |v = 0, J = 2〉 48 kHz / torr 96 kHz / torr

|v = 0, J = 1〉 → |v = 0, J = 3〉 59 kHz / torr 115 kHz / torr

Table 6.3 Temperature Dependence of Pressure Broadening Coefficients This table gives the
pressure broadening coefficients σP of relevant vibrational and rotational transitions in molecular
deuterium (D2) and hydrogen (H2). Although the pressure broadening linewidths are smaller at
colder temperatures, the sensitivity of linewidth to pressure increases as temperature decreases.
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Chapter 7

Progress in Yavuz Lab

The foundation for the molecular modulation experiment in the Yavuz Lab was in place when

I joined the group. The hard work and progress of Deniz Yavuz, my advisor and the leader of the

group, and older graduate students Daniel Sikes and Tyler Green made my work possible. Tyler

especially was pivotal in designing and building much of the molecular modulation experiment,

and he also trained me to take over the experiment. In this chapter we will review the progress

made by Tyler, Deniz, Daniel, and myself that occurred before I became the principle student on

the molecular modulation project. Much of the work described in this chapter is covered in more

detail in Tyler’s thesis [25].

We begin with a key milestone in the molecular modulation project that was accomplished by

Tyler, Deniz, and Daniel just before my arrival in Yavuz Lab in January 2010 (Section 7.1). We

will then review progress made by Tyler, Deniz, and myself while I was the junior graduate student

on the project (Sections 7.2 and 7.3). In an attempt to avoid cumbersome phrases, all experiments

will be described in the present tense.

7.1 CW Rotational Raman Generation

In this section, we describe an experiment demonstrating strong Stokes sideband generation

with a rotational Raman transition in molecular deuterium [52]. Working at room temperature

with an earlier version of the high-finesse cavity described in Chapter 6, we generate more than

320 mW of rotational Stokes output power in a continuous-wave Raman laser. Figure 7.1 shows

the transmitted power in the pump and the Stokes beams as a function of the incident pump power.
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This is among the largest output powers ever generated in gas-phase CW Raman lasing. Raman

laser powers of a over 1 W have been achieved in photonic crystal fiber experiments [70], but as

mentioned in Section 6.3, fiber experiments have the drawback of much larger linewidths, on the

order of hundreds of MHz. The full-width-half-maximum linewidth of this high-power Raman

laser was on the order of 10 kHz. The Raman lasing occurs with a deuterium gas pressure of 0.1

atm inside of the high-finesse cavity.

Figure 7.1 Rotational Raman Laser This figure shows the transmitted pump power (empty blue
triangles) and the generated Stokes power (solid red diamonds) as a function of the incident pump

power. The Raman medium is molecular deuterium gas at a pressure of 0.1 atm. The scattering
transition is the |ν = 0, J = 1〉 to |ν = 0, J = 3〉 rotational transition, which has a transition

frequency of 8.9 THz. The pump beam wavelength is 1555 nm, and the Stokes beam wavelength
is 1630 nm. The Raman lasing threshold, the incident pump power at which Raman lasing begins
to occur, is about 1 W. This is evidenced by the plateauing of the transmitted pump power. After
this point, any additional incident pump power is being converted to Stokes power. The dotted

line is a linear fit of the Stokes data.

The experimental arrangement is very similar to the one described in Chapter 4. There are

two main differences: the seed laser and the cavity. The seed laser is at a wavelength of 1555 nm

(instead of 1064 nm), and it is amplified with an erbium (rather than ytterbium) fiber amplifier.

The cavity mirrors have the same high-power, high-reflectivity coating as the mirrors described in

Section 6.3. They are highly reflective at both the pump (1555 nm) and the Stokes wavelengths

(1630 nm), and they have a radius of curvature of 50 cm. The cavity is 27 cm long, about one third
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of the length of the experimental cavity described in Section 6.3. This cavity is not liquid nitrogen

cooled; this experiment is performed at room temperature.

The Raman scattering occurs on the |ν = 0, J = 1〉 to |ν = 0, J = 3〉 rotational transition in

deuterium. In agreement with the calculation of Table 6.1, the transition frequency is 8.9 THz. Be-

cause the objective is to generate a single, strong Stokes beam rather than a broad, multi-ordered

spectrum, the pump light is circularly polarized using a quarter-wave plate. This results in the

preferential generation of the first-order Stokes beam, which has the opposite circular polarization

as the pump [71]. This is due to the conservation of angular momentum. The molecule gains one

quantum of angular momentum when the circularly polarized pump photon excites it to the virtual

state, and then it gains another when the Stokes photon is emitted with the opposite circular po-

larization. The opposite circular polarization of the Stokes beam means that it will preferentially

scatter to generate its frequency up-shifted sideband (the pump), rather than a second-order Stokes

beam. (See Subsection 1.2.3 for a description of this two-photon Raman process, and the discus-

sion of Figure 10.1 for more explanation of the connection between polarization and preferential

sideband generation.)

This demonstration of strong CW Raman lasing in molecular deuterium is an important step

towards demonstrating the feasibility of our CW molecular modulation scheme.

7.2 Coherent Raman Spectrum

Building upon the success of the high-power rotational Raman generation of Section 7.1, we

expand our CW stimulated Raman scattering experiment to generate three CW spectral compo-

nents covering about one octave of optical bandwidth [72]. Light modulation at a frequency of

nearly 90 THz allows us to generate this broad spectrum. Furthermore, we demonstrate the mutual

coherence of the three spectral components, and this indicates promise for using such a coherent

spectrum to generate arbitrary optical waveforms.

The experimental arrangement is very similar to the experiment described in the previous sec-

tion. The important differences are that the seed laser wavelength is 1064 nm and that the Raman

lasing occurs on the |v = 0, J = 0〉 to |v = 1, J = 0〉 fundamental vibrational transition of
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D2. As shown in Table 6.1, this transition gives a modulation frequency of 89.6 THz, an order

of magnitude higher than the rotational frequency, and almost 1
3

of the frequency of the 1064 nm

light. This large modulation frequency produces a spectrum spanning from 807 nm to 1560 nm,

approximately 96% of an octave of bandwidth.

Inside the high-finesse cavity, the same cavity as in the rotational experiment, the locked 1064

nm laser intensity is strong enough to not only generate the vibrational Stokes sideband at 1560

nm, but also the anti-Stokes sideband at 807 nm. (See Subsection 1.2.3 for a discussion of Stokes

and anti-Stokes scattering.) The Stokes beam is resonant with the high-finesse cavity. It builds up

from noise from Raman scattering of the circulating pump beam, and the intracavity power builds

up over many round trips. The intense pump and Stokes beam stimulate Raman scattering, and

the resulting molecular coherence mixes with the pump beam to generate the anti-Stokes beam

through four-wave mixing. In contrast to the Stokes beam, the anti-Stokes beam lies outside of the

high-reflectivity range of the cavity mirrors, and therefore it is generated in a single pass through

the cavity. The spectrum and the four-wave mixing process are illustrated in Figure 7.2.

After the cavity, the three beams are separated using an SF11 prism. We first measure the

powers of the three beams for two different deuterium pressures, 0.1 atm and 0.5 atm. We generate

10s of mW of pump and Stokes light, and 10s of µW of anti-Stokes light. The anti-Stokes beam is

much weaker because it is not resonant with the cavity. Figure 7.3 displays output pump, Stokes,

and anti-Stokes powers as a function of the incident pump power for the two pressures. The

threshold incident power for Raman lasing, the power at which Stokes and anti-Stokes generation

occurs, is lower for the higher deuterium pressure, 0.5 atm. Note that even this higher pressure is

more than an order of magnitude lower than those used in many CW Raman lasing experiments,

and the effects of dispersion are still small [46, 50, 53].

In addition to measuring the powers of the three beams, we explore their mutual coherence.

We look at two nonlinear χ(2) processes in a 10-µm thick Beta-Barium-Borate (BBO) crystal. The

quantum interference of the two processes is a function of their relative phases. This procedure is

based on work by Hsieh et al. [40]. Figure 7.4 shows a schematic of this measurement process.

The transmitted beams are separated using an SF11 prism, as with the power measurement. We
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Figure 7.2 Four-Wave Mixing On the left is an optical spectrum analyzer scan displaying the
anti-Stokes, pump, and Stokes beams. The anti-Stokes and Stokes beams are 89.6 THz, the

modulation frequency, away from the pump beam. The figure on the right illustrates the
four-wave mixing process that generates the anti-Stokes beam. The solid red arrows represent the
pump beam at 1064 nm. As the pump beam resonates with the cavity, the Stokes beam builds up

from noise from Raman scattering off of the |v = 0, J = 0〉 to |v = 1, J = 0〉 vibrational
transition in molecular deuterium. The Stokes beam, at 1560 nm and represented by the dashed

blue arrow, also resonates with the cavity. The intense pump and Stokes beams build up the
molecular coherence between the states. This coherence mixes with the pump beam to generate
an anti-Stokes beam through four-wave mixing, a χ(3) nonlinear process. The anti-Stokes beam,
at 807 nm and represented by the dotted green arrow, is not resonant with the cavity, and thus is

generated in a single pass through the system.

place a 1-mm-thick BK7 glass slide in the beam path of the Stokes beam. The slide is mounted

on an actuator so that the slide can be rotated. Small rotations modify the beam path, and thus

the phase, of the Stokes beam. (The Stokes beam was chosen because of its convenient location

and power, but modifying the phase of any of the three beams would have a similar effect.) Each

of the three beams is then independently reflected back into the prism to recombine them. The

recombined beams are then focused on the BBO crystal with an achromatic-doublet lens. (The

BBO crystal must be thin in order to avoid dispersion of the three beams inside the medium. A

thicker crystal would not maintain the relative phases of the beams.) In order to ensure that all

three beams focus at the same location, we individually optimize the transmission of each beam

through a pinhole aperture at the focal point.
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Figure 7.3 Powers of the Generated Coherent Spectrum These figures show the transmitted
powers of the beams shown in the spectrum of Figure 7.2 as a function of the incident pump

power for two different pressures. The solid red circles mark the transmitted pump power. Notice
the characteristic plateauing of the transmitted pump power, as is characteristic of Raman lasing.
(See also Figure 7.1.) The solid green triangles mark the transmitted Stokes power, and the empty

black diamonds mark the transmitted anti-Stokes power. Note that the vertical scale is different
for the anti-Stokes beam. The right vertical axis marks the anti-Stokes power in µW. Also notice

that the vertical scale is different for the two plots.

Through the second-order χ(2) nonlinearity of the BBO crystal, we generate a fourth beam at

a wavelength of 532 nm. As shown in the inset of Figure 7.4, there are two different quantum

mechanical processes in the crystal that can generate 532 nm light: two photons from the pump

beam (second harmonic generation - SHG) or one photon each from the Stokes and anti-Stokes

beams (sum-frequency generation - SFG). Depending on the relative phases of the three Raman

beams, these two paths may interfere constructively or destructively, thus generating more or less

532 nm light. Controlling the phase of one of the three beams gives us enough relative phase

control to manipulate this interference effect [32]. After the BBO crystal, all four beams are

collimated, and then spatially separated by a prism. The generated 532 nm light is further isolated

using a narrowband interference filter, and then its weak signal is detected using a single-photon-

counting module.

Figure 7.5 shows the number of 532 nm photons detected per second as a function of the

phase change of the Stokes beam due to the glass slide rotation. The figure includes experimental
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Figure 7.4 Quantum Path Interference The spectrum, consisting of the pump (ωp), the Stokes
(ωS), and the anti-Stokes (ωa) beams, is transmitted through the cavity and is spatially separated

by a prism (P). The Stokes beam is manipulated by a glass slide (GS), which can rotate to change
the path length and thus the phase of the beam. Individual mirrors then reflect the three beams
back to the prism. The recombined beams are focused to a common focus by an achromatic
doublet lens (AD). The beams are focused onto a 10-µm-thick Beta-Barium-Borate crystal

(BBO). As shown in the inset, two second-order χ(2) processes in the nonlinear crystal lead to the
generation of 532 nm light. Two pump photons can create 532 nm light through second-harmonic

generation (SHG), or one anti-Stokes photon and one Stokes photon can create 532 nm light
through sum-frequency generation (SFG). Depending on the relative phases, the 532 nm light

generated from these two processes can add constructively or destructively. After the BBO
crystal, all four beams are sent through a collimating lens (CL) and then another prism (P) to
spatially separate them again. The 532 nm light is then further isolated using a narrowband

interference filter (IF) and detected using a single-photon-counting module (SPCM).

data points (red diamonds) as well as a numerical simulation (green line). The phase change is

calculated from the refractive index and the rotation angle of the glass slide. In order to make the

two interfering paths (SHG and SFG) more comparable, the pump beam was attenuated by 60%

using a neutral density filter. (Recall that the anti-Stokes beam is orders of magnitude lower in

power than the other beams because, unlike the other two beams, it is not resonant with the cavity.)
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Before the BBO crystal, the powers and Gaussian waist sizes of the three beams are: Pump - 5.61

mW and 33 µm, Stokes - 39.4 mW and 36 µm, and anti-Stokes - 38 µW and 30µm. The solid line

in Figure 7.5 is a numerical simulation of the interference based on these measured power values

and beam sizes. The only two fitting parameters of the simulation are the unknown initial relative

phase and an absolute vertical scaling; the contrast is calculated without any adjustable parameters.

The fringe visibility (the amplitude over the average value) is around 75%. This large contrast of

the experimental data, which is in good agreement with the theoretical calculation, suggests that

there is significant quantum interference between the two 532 nm light generation paths. This

implies that the three beams have almost perfect mutual phase coherence. The data takes about

fifteen minutes to record and the relative phase drift between the three beams during this period is

negligible.

Figure 7.5 Mutual Coherence Measurement This figure shows the number of 532 nm photons
detected per second by the photon counter as a function of introduced phase change of the Stokes
beam. The sinusoidal pattern comes from the interference of the two quantum paths that generate
532 nm light. (See Figure 7.4.) The large visibility of the fringes suggest significant interference
and thus excellent mutual phase coherence of the beams. The red diamonds mark experimental

data points, and the green curve is a numerical simulation based on experimental parameters. The
contrast of the simulated curve is calculated without any adjustable parameters.

At one of the maxima of the interference fringes, adding the fields of the three beams yields an

AM-like waveform, with a relatively constant frequency and significant amplitude changes. This
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is because the beat frequency envelope from the pump-Stokes beat note is in phase with the beat

frequency envelope of the pump-anti-Stokes beat note. (The two beat frequencies are the same

because both are spaced from the pump beam by the modulation frequency.) The superposition

of these in-phase envelopes has maxima and minima (coincident with maxima and minima of the

individual envelopes), and the waveform is thus AM-like.

At one of the minima of the interference fringes of Figure 7.5, the phases of the three beams

are such that adding their fields yields an FM-like waveform, with relatively constant amplitude

and changing frequency. This is because the pump-Stokes and pump-anti-Stokes beat frequency

envelopes are now π out of phase with one another. The maxima of one envelope are coincident

with the minima of the other, and therefore the superposition of the two envelopes has a relatively

constant amplitude. The only significant modulation, then, is of the frequency, and the waveform is

FM-like. (This frequency modulation was mostly negligible in the AM-like signal because near the

maxima the frequency is mostly constant. The frequency modulation that occurs near the minima

is negligible due to the low amplitude of the signal.)

In this way, the good phase coherence across the spectrum implied by Figure 7.5 demonstrates

the ability for primitive waveform synthesis. Although we have not yet explored this option, the

demonstrated phase control and near-perfect mutual coherence of the spectrum implies that with

proper amplitude adjustment (through the use of neutral density filters) we can synthesize any

waveform within the capabilities of this spectrum. Figure 7.6 shows what the synthesized temporal

waveform would look like if the three Raman amplitudes were adjusted to be equal and if the

phases were such to be at a maximum of the interference fringe. A near single-cycle optical

waveform with a repetition period of 11 femtoseconds would be formed. A single-cycle optical

waveform is a waveform whose pulse envelope has the same duration as the period of the electric

field oscillation. The repetition period is equal to the inverse of the modulation frequency. (If this

repetition period is too short for the desired application, pulses could be isolated using nonlinear

gating processes [73].) Recall that because the three CW spectral components of this waveform are

generated inside a high-finesse cavity, they have a full-width-half-maximum linewidth around 10
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kHz. Therefore the temporal waveform of Figure 7.6 is predicted to maintain its structure without

significant change for about 1
10 kHz

= 0.1 ms.

It is important to note that a key limitation of our experiment is the optical power of the gen-

erated spectrum, especially of the anti-Stokes beam. Due to the low generated anti-Stokes power,

the synthesized waveform of Figure 7.6 has an average optical power of only a fraction of a mW.

Figure 7.6 Inferred Synthesized Temporal Waveform This figure shows the intensity of an inferred
synthesized waveform as a function of time. This assumes that the three spectral components of
Figure 7.2 are combined while phase-locked and of equal amplitude. A near single-cycle optical
waveform with a repetition period of 11 femtoseconds is formed. t = 0 fs is chosen to be one of

the maxima of the pulse train. Note that because the absolute frequencies of the component
beams are not integer multiples of their frequency difference (the modulation frequency), the

carrier-envelope phase varies with time.

In this experiment, we demonstrate fully-coherent CW light modulation at a frequency of 89.6

THz. We generate significant anti-Stokes light at a wavelength that is not resonant with the cavity.

Furthermore, we demonstrate phase control, and therefore a primitive form of waveform synthesis,

using CW beams generated from stimulated Raman scattering. We view this experiment as the

first step towards synthesizing arbitrary optical waveforms using CW spectral components. By

increasing the efficiency of the scattering process and the number of generated Raman beams, we

will be able to increase the number of degrees of freedom for temporal waveform synthesis.
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7.3 Multiple-Order Rotational Raman Generation

An important limitation of the experiments described in the previous two sections is the low

number of generated Raman sidebands. This is especially relevant in the quest for ultrashort pulse

synthesis and arbitrary waveform generation. With a spectrum of only three Raman sidebands,

well-defined pulse synthesis is not possible, and the range of waveforms that can be synthesized is

severely limited. In this section, we discuss an experiment that significantly increases the number

of Raman spectral components [74].

We demonstrate the generation of up to seven Raman sidebands (two anti-Stokes and five

Stokes) with a combined average power exceeding 50 mW. The Raman scattering occurs on the

|v = 0, J = 0〉 to |v = 0, J = 2〉 rotational transition in molecular deuterium. We achieve this

generation at a pressure of around 0.01 atm. This is more than an order of magnitude lower than

our previous experiments and thus more than two orders of magnitude lower than in typical CW

stimulated Raman scattering experiments. This low pressure helps us to avoid detrimental phase

mismatch between sidebands. Furthermore, when we increase the pressure to around 0.1 atm, we

observe simultaneous |v = 0, J = 0〉 to |v = 0, J = 2〉 and |v = 0, J = 1〉 to |v = 0, J = 3〉

rotational stimulated Raman scattering. This increases the total number of Raman sidebands to

more than ten.

The experiment arrangement is similar to that of those described in the previous two sections.

The seed laser for this experiment has a wavelength of 1064 nm, and it is amplified by a ytterbium

fiber amplifier. The key experimental change that leads to the high-order rotational generation is a

new, liquid-nitrogen-cooled high-finesse cavity that cools the deuterium to 77 K. The cavity, except

for a few minor modifications, is the one described in Section 6.3 and Appendix E, including the

high-reflectivity mirror coating. In contrast to the cavity in the previous two sections, the mirrors

have a radius of curvature of 100 cm, and the length of the cavity is 75 cm. Thus, the free spectral

range is 200 MHz. (See Equation 5.1 for the definition of free spectral range.) This longer cavity

increases the distance over which the lasers interact with the molecules, and it also decreases the

maximum intensity inside of the cavity because the cavity waist is larger. However, the main
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effects of the change in cavity are associated with the addition of liquid nitrogen, which increases

rotational ground state populations and narrows transition linewidths as described in Section 6.3.

Although we did not study this in-depth, we note that the Raman lasing threshold decreased to less

than 1
3

W, a decrease of over a factor of three compared to our room temperature experiments. (See

Figure 7.1.)

When we lock the linearly-polarized pump laser to the liquid-nitrogen-cooled cavity, we ob-

serve multiple-order rotational stimulated Raman scattering. At low pressures, we find that scat-

tering on the |v = 0, J = 0〉 to |v = 0, J = 2〉 transition is dominant. This transition frequency,

and thus the spacing between successive Raman sidebands, is 5.4 THz. Figure 7.7 shows a typical

spectrum that we observe on an optical spectrum analyzer at a deuterium pressure of around 0.01

atm and 20 W of incident pump power. In addition to the pump laser, we observe the generation of

up to two anti-Stokes (AS1, AS2) and five Stokes (S1-S5) beams. The pump laser has a wavelength

of 1064 nm, and the Raman spectral components range from 1025 nm to 1180 nm in wavelength.

Figure 7.7 Multiple-Order Rotational Raman Scattering - 0.01 atm D2 This figure shows an
optical spectrum analyzer scan of the spectral components generated by stimulated Raman

scattering in our high-finesse cavity with 20 W incident pump power. The scattering occurs on the
|v = 0, J = 0〉 to |v = 0, J = 2〉 rotational transition in molecular deuterium. The transition

frequency, and thus the spacing between successive spectral components, is 5.4 THz. The
spectrum contains the pump, two anti-Stokes (AS1, AS2) and five Stokes (S1-S5) beams. Note

that the vertical scale is logarithmic.

We believe that the Stokes sidebands are generated through cascade stimulated Raman scatter-

ing. Each Stokes sideband behaves as an independent pump and produces the subsequent Stokes

beam through Raman lasing at a cavity mode [75]. The anti-Stokes beams are generated through

four-wave mixing as described in Figure 7.2. The pump and the Stokes beams drive the molecular
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coherence of the transition, and this coherence mixes with the pump to produce the anti-Stokes

beam. The anti-Stokes beam then mixes with the coherence to produce the second-order anti-

Stokes beam.

We note that Luo et al. have observed CW cascade stimulated Raman scattering as well [76].

Their experiment was based on scattering in silicate fibers using multiple fiber Bragg gratings. As

with the previously mentioned fiber-based experiments, the linewidths of the beams produced are

significantly wider than the kHz-level linewidths of our high-finesse cavity experiments.

Figure 7.8 shows the powers transmitted through one of the mirrors as a function of the incident

pump beam power at a deuterium pressure of around 0.01 atm. The powers of the pump, one

anti-Stokes (AS1), and five orders of Stokes (S1-S5) beams from the spectrum of Figure 7.7 are

displayed. The second-order anti-Stokes beam (AS2) had a power too low to accurately record.

The maximum powers generated are 60 µW for AS1, 17.5 mW for the pump, 2.4 mW for S1, 9.2

mW for S2, 2.9 mW for S3, 24.5 mW for S4, and 43 µW for S5. The fifth-order Stokes sideband

(S5) is weaker due to a significant drop in the mirror reflectivity at its wavelength.

As we increase the deuterium pressure, we observe more evenly distributed sideband powers

with reduced total combined power. The reduction in combined power with increasing pressure is

likely a result of changes in the cavity mode due to Raman thermal lensing effects as demonstrated

by Brasseur and colleagues or due to nonlinear Raman self-focusing or defocusing [53]. Both of

these effects are due to the intense fields inside of the cavity, where the higher intensities near the

optical axis cause a gradient in the refractive index. The lower combined power is probably also

due in part to a reduction in the performance of the cavity lock as a result of significant depletion of

the pump beam and of disruptions caused by the temporal dynamics of the Raman lasing process.

At higher pressures, we also observe additional generation on the |v = 0, J = 1〉 to |v = 0, J =

3〉 rotational transition. This transition has a frequency of 8.9 THz, and thus this is the spacing

between subsequent Raman sidebands. (Figure 6.8 shows that at liquid nitrogen temperatures, the

J = 0 and J = 1 rotational states have roughly equal populations, so it is reasonable to expect

simultaneous scattering off of both transitions.) We find the competition between |v = 0, J = 0〉

to |v = 0, J = 2〉 and |v = 0, J = 1〉 to |v = 0, J = 3〉 generation to be sensitive to the mirror
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Figure 7.8 Power Curves - Rotational Raman Scattering - 0.01 atm D2 This figure shows power
curves for the rotational spectral components shown in Figure 7.7. Powers are displayed for the
pump beam, five orders of Stokes beams (S1-S5), and one anti-Stokes beam (AS1) as a function

of incident pump power. The second-order anti-Stokes beam was too weak to record accurate
power measurements. Note that due to their low powers, the fifth Stokes beam and first

anti-Stokes powers are multiplied by 100 to improve their visibility. The 20% error bars on each
measurement are not shown to increase clarity. At the maximum incident pump power, the

combined power of the Raman spectral components is over 50 mW.

alignment, tuning of the cavity length, and the absolute frequency of the pump laser beam. The

sensitivity is likely due to the changing frequency overlap between the longitudinal modes of the

cavity and the Raman transition lineshapes. We have not yet investigated the competition between

the two rotational transitions in detail.

Figure 7.9 shows a typical spectrum generated at a deuterium pressure of around 0.1 atm with

an incident pump power of 9 W. In addition to the one anti-Stokes beam (AS1) and five Stokes

beams (S1-S5) from the |v = 0, J = 0〉 to |v = 0, J = 2〉 transition, the pump beam generates the

first Stokes sideband on the |v = 0, J = 1〉 to |v = 0, J = 3〉 transition. We label this beam P′, as

it acts as a new pump and generates a new set of sidebands on the |v = 0, J = 0〉 to |v = 0, J = 2〉

transition. We label this new spectrum with bold, blue, and primed labels. The total optical power

in the generated spectrum of Figure 7.9 is approximately 25 mW.

One drawback of the approach used to produce the above Raman spectra is that the frequency

difference between adjacent spectral components in not exactly constant. This is because the
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Figure 7.9 Multiple-Order Rotational Raman Scattering - 0.1 atm D2 This figure shows an
optical spectrum analyzer scan of the spectral components generated by stimulated Raman

scattering in our high-finesse cavity with 9 W of incident pump power. The scattering occurs on
both the |v = 0, J = 0〉 to |v = 0, J = 2〉 and the |v = 0, J = 1〉 to |v = 0, J = 3〉 rotational

transitions in molecular deuterium. The transition frequencies of these transitions are 5.4 THz and
8.9 THz, respectively. The spectrum contains the pump, one anti-Stokes (AS1) and five Stokes

(S1-S5) beams from the |v = 0, J = 0〉 to |v = 0, J = 2〉 transition. It also contains the first-order
Stokes beam from the |v = 0, J = 1〉 to |v = 0, J = 3〉 transition. This Stokes beam, labeled P′,
becomes the pump beam for a new spectrum of |v = 0, J = 0〉 to |v = 0, J = 2〉 scattering. This
second spectrum, whose components are labeled in bold, blue, and primed labels, contains two
anti-Stokes beams (AS1′, AS2′) and two Stokes beams (S1′, S2′). Note that the vertical scale is

logarithmic.

Stokes sidebands are produced through cascade stimulated Raman scattering, and not four-wave

mixing. (Although both processes can occur, cascade scattering occurs more readily than four-

wave mixing due to the high finesse of our cavity.) Each subsequent Stokes beam is generated

from the previous sideband through Raman lasing in the cavity starting from noise. (Note that

this is not the case for the anti-Stokes beams. Anti-Stokes processes are based on transitions from

higher energy states to lower energy states. In general, the higher energy states have lower pop-

ulations, and thus the population inversion necessary for lasing is absent. Furthermore, because

the anti-Stokes beams are not lasing, yet the cavity mirrors are still highly reflective at their wave-

lengths, the presence of the cavity actually decreases the anti-Stokes transmitted power. There is

no enhancement in power from being resonant with the cavity, and very little light is transmitted

through the highly-reflective mirrors.) Because each beam is produced through a lasing process,

the frequency of the generated beam necessarily corresponds to a cavity resonance, as shown in

Figure 3.1. However, each generated beam is at a different frequency, and thus each sideband has

a unique set of cavity resonances. These sets of resonances do not necessarily overlap with one
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another. Therefore, the two-photon detuning and the frequency of the Raman transition can vary

between different orders of sidebands. Figure 7.10 illustrates this variability.

Figure 7.10 Frequency Variation with Cascade Scattering This figure illustrates the source of
frequency variation with cascade Raman scattering. (a) This is a simplified view of first- and
second-order Raman scattering from Figure 1.9. |a〉 and |b〉 are the molecular ro-vibrational

states. The solid green arrow is the pump beam. The dashed red arrows are the first-order Stokes
beam, and the dotted orange arrow is the second-order Stokes beam. (b) This is a more detailed

view of the lower half of diagram (a). It includes the cavity resonances for the first- and
second-order Stokes beams (red and orange lines, respectively). Because the different orders of

Stokes beams have different frequencies, their cavity resonances are different. This means that the
frequencies of the two-photon Raman transitions for the first-order (ωR1) and second-order (ωR2)
beams are different. Thus, the frequency separation between adjacent Stokes beams is variable.

This frequency variability is a significant drawback to this method of Raman spectrum gen-

eration. However, the variability can, in principle, be measured and corrected. Nonlinear optical

mixing methods can be used to measure the frequency of the sidebands, and frequency-tuning ele-

ments (acousto-optic modulators, for example) can be placed in the path of each sideband, as was

done with the phase-modulating glass slide in Figure 7.4. In this way, one could precisely control

the frequencies if an equidistant Raman spectrum were desired. Alternatively, as shown by Zaitsu

and Imasaka, for a spectrum of just a few Raman beams, the frequencies of the sidebands can be

controlled by tuning the resonances of the cavity using a dispersive gas [77].

We note that the spectral components of the spectra of Figures 7.7 and 7.9 have random phases,

yet those phases are well-defined relative to one another. (The randomness comes from the fact
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that the generation of each Stokes beam is initiated from noise by spontaneous Raman scattering.)

Because they have a definite phase relationship, an external phase mask could be used to correct

the phases to produce a phase-locked spectrum. If we assume the ideal case of phase-locked

spectral components with comparable amplitudes, the spectrum of Figure 7.7 would synthesize

approximately 20-fs-long optical pulses with 186 fs between pulses.

In the following chapters, we will explore further experiments that build upon these results.

We will discuss how we expand our spectrum by simultaneously scattering off of both vibrational

transitions as in Section 7.2 and rotational transitions as in this section. We will also discuss

progress towards using such scattering as a molecular modulation. Before we move on, however,

we note two interesting aspects of this rotational experiment that merit further attention. We have

not yet explored either in depth. The first is the wide range of transverse Gaussian modes that

we observe in the rotational beams. For certain cavity alignments, we observe (with an infrared

viewer) all Stokes and anti-Stokes beams to be in the TEM00 spatial mode. However, a slight

change in the alignment of one of the cavity mirrors, the cavity length, or the laser frequency can

change the spatial modes. We observe intricate TEMnm spatial modes with very high n and m.

These beams have intricate spatial profiles much more complex than those displayed in Figure 6.5.

We generally try to avoid such modes by making adjustments to the cavity end-clamp-tightening

bolts to regain TEM00 modes. However, further study of these modes would perhaps teach us more

about the subtleties of cavity alignment.

Another observation that merits further attention is our possible observation of scattering off of

the forbidden |v = 0, J = 0〉 to |v = 0, J = 1〉 transition. Figure 7.11 shows a preliminary optical

spectrum analyzer scan with a peak spaced 1.8 THz away from the pump. This is the transition

frequency associated with the |v = 0, J = 0〉 to |v = 0, J = 1〉 Raman transition, which is

dipole forbidden for symmetric homonuclear molecules like D2. Observation of significant Raman

scattering off of this transition would be a notable discovery.



92

Figure 7.11 Possible Observation of Forbidden Transition This figure shows an optical spectrum
analyzer scan of the spectral components generated by stimulated Raman scattering in our

high-finesse cavity. Among the complex spectrum is a beam, marked with a red F, that is located
around 1.8 THz from the pump beam. This corresponds with Raman scattering off of the

|v = 0, J = 0〉 to |v = 0, J = 1〉 rotational transition in molecular deuterium. This transition is
dipole forbidden for a symmetric homonuclear molecule like D2. Note that the vertical scale is

logarithmic.



93

Chapter 8

Broadband Spectrum Generation

In this chapter, we will discuss further progress in broadband spectrum generation using stim-

ulated Raman scattering. We expand upon the work described in Chapter 7 and experimentally

demonstrate a CW ro-vibrational Raman spectrum that is two octaves wide with spectral com-

ponents ranging from 800 nm to 3100 nm in wavelength [78]. To our knowledge, the nearly

two-octave-wide spectrum described in this chapter is the broadest spectrum ever produced in

the CW domain. As in previous chapters, the spectrum is produced in low-pressure molecu-

lar deuterium inside a high-finesse cavity, and this yields spectral components with narrow fre-

quency linewidths. We use an optical heterodyne detector to measure the absolute full-width-half-

maximum linewidths, and we find them to be on the order of 10 kHz.

The experimental arrangement used to generate this broad spectrum is identical to the one

described in Section 7.3. We use a seed laser with a wavelength of 1064 nm that is amplified to 20

W using a ytterbium-doped fiber amplifier. The linearly-polarized amplified beam is then coupled

to the same 75-cm-long, liquid-nitrogen-cooled high-finesse cavity. The high-reflectivity cavity

mirrors are also identical to those in Section 7.3.

At deuterium gas pressures of order 0.1 atm, we observe that when the pump laser at 1064

nm is locked to the cavity, the vibrational Stokes sideband at 1560 nm on the |v = 0, J = 0〉

to |v = 1, J = 0〉 transition is generated through Raman lasing. Just as described in 7.2, these

pump and generated Stokes beams drive the molecular coherence and produce the vibrational anti-

Stokes beam through four-wave mixing. In this experiment, in addition to this anti-Stokes beam at

a wavelength of 807 nm, four-wave mixing also produces a second-order vibrational Stokes beam
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at 2923 nm. Both the anti-Stokes beam and the second-order Stokes beam are outside of the high-

reflectivity ranges of the cavity mirrors. They are not resonant, but are produced in a single pass

through the cavity.

In addition to this vibrational Raman generation, we simultaneously observe rotational Raman

lasing on the |v = 0, J = 0〉 to |v = 0, J = 2〉 transition, similar to that seen in the experiment

of Section 7.3. The mirrors of the cavity have such high reflectivity in the wavelength ranges

around 1010 - 1150 nm and around 1430 - 1620 nm that this rotational generation can build up

from noise. Just as in Section 7.3, we produce multiple-order rotational Stokes sidebands through

cascade Raman lasing. The generated rotational Stokes beam behaves as an independent pump

and produces the subsequent higher-order rotational Stokes sideband through Raman lasing. The

resulting rotational Stokes beams also mix with the vibrational molecular coherence to generate

rotational spectra near each vibrational sideband.

Due to this simultaneous vibrational and rotational Raman generation, we observe a broad

ro-vibrational spectrum. The frequencies νnm in the spectrum have the form

νnm = νpump + nνvibmod +mνrotmod, (8.1)

where νpump is the frequency of the pump beam, and n and m are integers. νvibmod and νrotmod are the

vibrational and the rotational Raman modulation frequencies, respectively. νvibmod is the frequency

of the |v = 0, J = 0〉 to |v = 1, J = 0〉 vibrational transition, which is 89.6 THz. νrotmod is the

frequency of the |v = 0, J = 0〉 to |v = 0, J = 2〉 rotational transition, which is 5.4 THz. (See

Table 6.1 and Appendix F for more on transition frequencies.)

Figure 8.1 shows the generated ro-vibrational spectrum that is transmitted through one of the

cavity mirrors. The 800 - 1650 nm region is recorded on an optical spectrum analyzer in a single

scan. The combined power of the two mid-infrared sidebands (2923 nm and 3086 nm) is measured

using a germanium (Ge) filter and a lead selenide (PbSe) photodiode. The relative power of these

two beams is inferred using the properties of the filter and the photodiode. The optical powers for

all rotational groups were measured, and the approximate relative powers of the rotational beams

in each group can be inferred by the relative heights of the peaks in Figure 8.1. By slightly chang-

ing the cavity length or seed laser frequency, we have some control over the relative strength of
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Figure 8.1 Broadband Ro-Vibrational Spectrum This figure shows the ro-vibrational spectrum
generated through stimulated Raman scattering in a high-finesse cavity. The mirrors have high

reflectivity at wavelengths around 1010 - 1150 nm and around 1430 - 1620 nm. The Raman
medium is molecular deuterium gas at a pressure of 0.1 atm. The spectrum is obtained by locking

a single 1064-nm-wavelength pump laser to the cavity. The scattering transitions are the
|v = 0, J = 0〉 to |v = 1, J = 0〉 vibrational transition (89.6 THz) and the |v = 0, J = 0〉 to

|v = 0, J = 2〉 rotational transition (5.4 THz). The 800 - 1650 nm region is recorded on an optical
spectrum analyzer in a single scan, and the mid-infrared beams are measured using a PbSe

photodiode. In the spectrum analyzer scan, the change in the background level between 800 - 900
nm and the jump in the background level at 1000 nm are instrument artifacts. The insets show

optical heterodyne linewidth measurements of the full-width-half-maximum frequency linewidth
for the 1064 nm and 1605 nm beams. See Table 8.1 for powers of each rotational group: A-S

anti-Stokes, P pump, S Stokes, S2 second-order Stokes.

the vibrational and rotational transitions. This is because the Raman lasing process depends criti-

cally on the overlap of the frequencies of the longitudinal cavity modes with the Raman transition

linewidths. Changing the cavity length or seed frequency tunes the position of the cavity modes in

or out of resonance with a particular Raman transition, thereby adjusting its strength. The powers

of the rotational groups shown in Figure 8.1 are given in Table 8.1.

Recall that neither the anti-Stokes nor the second-order Stokes group beams are resonant with

the cavity. As discussed below Figure 7.9, the cavity mirrors serve to diminish rather than to
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Rotational Group Approximate Wavelength Range Power

Pump 1044 - 1152 nm 15 mW

First-Order Vibrational Stokes 1560 - 1605 nm 20 mW

First-Order Vibrational Anti-Stokes 807 - 857 nm 50 µW

Second-Order Vibrational Stokes 2923 - 3086 nm 1 µW

Table 8.1 Optical Powers of Rotational Groups This table gives the powers of the rotational
spectra around each of the vibrational beams in Figure 8.1. The approximate relative powers of
the individual rotational sidebands in each group can be determined by examining the relative

heights of the peaks in the figure.

enhance the transmitted powers for these beams. The second-order Stokes beams are further atten-

uated by the cavity and chamber optics, which absorb light in the mid-infrared.

To further explore the generated spectrum, we measure the absolute frequency linewidths of

the spectral components in the pump and in the first-order vibrational Stokes regions. Nick Brewer,

a graduate student in our research group, has constructed an optical heterodyne detector for per-

forming such linewidth measurements. The detector splits the sideband to be measured into two

paths and delays one of them using a 10 km-long optical fiber. This delay, which is around 50 µs,

allows us to compare the current laser frequency to the laser frequency from 50 µs ago. This com-

parison measures the temporal coherence of the beam. The measurement is made by recombining

the delayed and undelayed beams on a fast photodiode. This allows us to observe the beat intensity

as a function of frequency, giving us a measure of the laser linewidth.

We find the beat linewidth measurements to be fairly sensitive to our experimental conditions,

especially to the quality of the Pound-Drever-Hall lock that keeps the seed laser resonant with the

cavity. As a result, the linewidth measurements for all beams vary by as much as a factor of two

from day to day, and even from measurement to measurement. However, for each of the seven

spectral components we examine (five near the pump and two near the vibrational Stokes), we find

the full-width-half-maximum beat linewidth to be consistently at the 10 kHz level. The insets in

Figure 8.1 show sample beat measurements for the beams at 1064 nm and at 1605 nm. For this
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particular measurement, the full-width-half-maximum linewidths at the two wavelengths are found

to be 11 kHz and 28 kHz, respectively. There is nothing fundamental about the 10 kHz absolute

linewidth. We believe that the linewidths of the sidebands are currently limited by imperfections in

the locking feedback electronics that cannot fully account for perturbations to the system. Brasseur

and colleagues have demonstrated Raman lasing linewidths on the order of 1 kHz [47], and with

technical improvements, this should be attainable in our experiment.

Figure 8.2 shows the spatial profiles of many of the ro-vibrational sidebands in the broadband

spectrum. In this measurement, the generated spectrum transmitted through one of the cavity

mirrors is spatially dispersed with an SF11 prism. All of the beams are captured in one image

taken with a digital camera (with the aid of fluorescent target materials). The beams are then

allowed to propagate farther and further spatially disperse, allowing us to photograph the individual

rotational beams using the same method. Finally, we use a charge-coupled-device-based (CCD-

based) beam profiler to image those beams visible to the CCD. We see that all beams have clean

TEM00 Gaussian profiles because they are produced in a high-finesse cavity. (As mentioned at the

end of Section 7.3, we can change the cavity length and alignment to observe lasing in higher-order

transverse spatial modes. We typically observe reduced sideband generation efficiency when the

sidebands are lasing in higher-order spatial modes.)

As with the purely rotational scattering of Section 7.3, with this broadband ro-vibrational spec-

trum we can observe simultaneous rotational generation on multiple transitions. In the spectrum

of Figure 8.1, the rotational scattering was exclusively from the ground state on the |v = 0, J = 0〉

to |v = 0, J = 2〉 transition. However, at liquid nitrogen temperatures, the thermal populations of

the J = 0, J = 1, and J = 2 rotational levels are 46%, 45%, and 8%, respectively. (See Figure

6.8.) Thus, if the cavity is appropriately tuned, significant rotational scattering starting from each

of these J levels is possible.

Figure 8.3 highlights the details of the pump and the vibrational anti-Stokes regions of a mixed

rotational spectrum at a pressure of 0.2 atm. The pump produces five rotational sidebands (AS1,

S1-S4) on the |v = 0, J = 0〉 to |v = 0, J = 2〉 transition. The modulation frequency of this

transition is 5.4 THz. (See Table 6.1.) The pump also produces a rotational Stokes sideband on
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Figure 8.2 Ro-Vibrational Spectrum Spatial Profiles This figure displays images of the spatial
profiles of many of the spectral components from the broadband Raman spectrum. The spectrum

transmitted through one of our cavity mirrors is spatially dispersed by an SF11 prism. The top
image captures all of the beams in the spectrum that we can image. For the second row of images,

the beams are allowed to propagate farther to allow for further spatial separation. Thus, the
individual rotational sidebands that make up the groups in the first image can be resolved. The

bottom row displays beam profiles as captured by a CCD-based beam profiler. All beams have a
nearly-perfectly Gaussian spatial profile from being generated in the TEM00 mode of the

high-finesse cavity. Note that the Gaussian profiles in the images are somewhat distorted by the
prism.

the |v = 0, J = 1〉 to |v = 0, J = 3〉 transition. This beam is labeled in blue as P′, and it is 8.9

THz away from the pump. (See Table 6.1.) This beam acts as an independent pump and generates

the primed spectrum (AS1′, S1′, S2′) by scattering off of the |v = 0, J = 0〉 to |v = 0, J = 2〉

transition. A third, separate first-order Stokes sideband from the pump beam is generated on the

|v = 0, J = 2〉 to |ν = 0, J = 4〉 transition, which has a modulation frequency of 12.4 THz.

(Table F.2 lists the frequencies of the rotational states. Calculating the difference between the

frequencies of the states of a transition yields the transition frequency.) This third Stokes beam

similarly produces the double-primed spectrum (AS2′′, AS1′′, S1′′, S2′′) on the |v = 0, J = 0〉 to

|v = 0, J = 2〉 transition.
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The spectrum is further enriched through four-wave mixing. Just as the pump mixes with

the coherence to generate the vibrational anti-Stokes beam as described in Figure 7.2, all of the

spectral components mentioned in the previous paragraph can mix with the coherence to generate

new sidebands. Those new sidebands that fall in the anti-Stokes region of the spectrum are shown

in Figure 8.3. They are labeled with the label of the beam that mixed with the coherence to create

them along with a subscript v to denote that they were generated through vibrational coherence.

Although it is not shown in the figure, four-wave mixing also produces sidebands near the first-

and second-order vibrational Stokes beams near 1560 nm and near 2923 nm. In total, this Raman

generation produces around 30 ro-vibrational sidebands.

Figure 8.3 Ro-Vibrational Spectrum - Multiple Rotational Transitions This figure displays part of
the rich ro-vibrational spectrum produced through stimulated Raman scattering in a high-finesse

cavity. The spectrum is produced through simultaneous scattering off of three rotational
transitions and one vibrational transition. The spectrum labeled in black was produced through
rotational scattering exclusively on the |v = 0, J = 0〉 to |v = 0, J = 2〉 transition. The primed

spectrum labeled in boldface blue was produced through rotational scattering on both the
|v = 0, J = 1〉 to |v = 0, J = 3〉 and the |v = 0, J = 0〉 to |v = 0, J = 2〉 transitions. The

double-primed spectrum labeled in green italics was produced through rotational scattering on
both the |v = 0, J = 2〉 to |v = 0, J = 4〉 and the |v = 0, J = 0〉 to |v = 0, J = 2〉 transitions.
The left section of the figure around the vibrational anti-Stokes beam was produced through
four-wave mixing. The sidebands are labeled with the label of the beam that mixed with the
coherence to generate them and a subscript v to indicate that they were generated through

vibrational coherence. Not shown are sidebands near the first- and second-order vibrational
Stokes beams produced through four-wave mixing. In total, this Raman spectrum contains around

30 ro-vibrational spectral components. Note that the top of the pump peak does not fit on the
vertical scale. The rise in the background level between 800 and 850 nm is an instrument artifact.
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The broadband spectrum described in this chapter is, to our knowledge, the broadest spectrum

ever produced through CW molecular modulation. We close this chapter with a discussion of the

applications of such a broadband spectrum to temporal waveform synthesis. We will concentrate

on the spectrum of Figure 8.1. There is not a rational relationship between the pump frequency

(281.8 THz) and the vibrational and rotational modulation frequencies (89.6 THz and 5.4 THz).

Thus, the synthesized temporal waveform will be quasi-periodic. If we assume that all the spectral

components are adjusted to have equal amplitudes and aligned phases (as we did in Figure 7.6), the

spectrum of Figure 8.1 would synthesize a quasi-periodic train of pulses with significant carrier-

envelope phase drift between pulses. (If desired, the carrier-envelope phase drift could be stabilized

using a method similar to the f-to-2f self-referencing technique used with titanium-sapphire lasers

[79].) The calculated pulse train is shown in Figure 8.4. Note that features with periods of both

11 fs (≈ 1
89.6 THz

) and 185 fs (≈ 1
5.4 THz

) are present. The inset details highlight the fact that some

of the pulses in the pulse train would have a sub-optical-cycle duration of 0.9 fs. This short pulse

duration is due to the broadness of the spectrum. Very roughly speaking, the duration of the pulse

goes as the inverse of the bandwidth of the spectrum. (We note that, as with Figure 7.6, the optical

power of the such pulses would be limited by power of the weakest spectral component.)

Synthesizing such a pulse train will require phase and amplitude control of the generated spec-

trum, which is one of our major goals for the near future. Such phase and amplitude control could

be provided by a programmable liquid crystal array [35]. Once synthesized, the temporal wave-

forms can be measured and characterized using cross-correlation studies with nonlinear media or

multiphoton ionization processes [10, 34, 35, 41].
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Figure 8.4 Calculated Quasi-Periodic Pulse Train This figure shows the pulse train that would be
generated if the spectrum of Figure 8.1 were adjusted so that the spectral components all have
equal amplitudes and aligned phases. Because there is not a rational relationship between the
pump frequency and the vibrational and rotational modulation frequencies, the synthesized
temporal waveform is quasi-periodic. The insets show details of this calculated pulse train,

including the central sub-optical-cycle pulse that has a sub-femtosecond duration.
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Chapter 9

Independent Mixing Beam Modulation

In Chapters 7 and 8, we focused on generating a coherent spectrum using stimulated Raman

scattering. The pump beam generates a Stokes beam from noise through Raman lasing, and then

the pump and this generated Stokes beam build up coherence between molecular energy levels.

This coherence then mixes with the pump (and other beams resonant with the cavity) to generate

additional Raman sidebands. (See Figure 7.2.) In this chapter we discuss an essential step in

developing a practical molecular modulator. We demonstrate that the molecular coherence in our

high-finesse cavity can be used to modulate a completely independent CW mixing beam [80]. This

work is motivated by promising previous experiments performed with pulsed lasers [71, 81].

Our CW molecular modulator has a modulation frequency of 17.6 THz, and it can modulate

any beam within the optical range of the spectrum, wavelengths from roughly 100 nm to 10 µm. In

addition to these broadband capabilities, the modulation efficiency of our device is independent of

the incident optical power, and therefore our modulator is capable of modulating arbitrarily weak

signals. These characteristics of our modulator highlight our motivations for pursuing molecular

modulation.

Molecular modulation is technically challenging, and the modulation efficiency is low. Initial

results suggest our modulator has a single-pass efficiency (defined as the total sideband power

divided by the incident pump power) varying between 10−4 and 10−8 over its operating range.

Despite these drawbacks, molecular modulation offers two distinct advantages over readily avail-

able alternatives such as AOMs and EOMs: high modulation frequencies and broadband input

capabilities. AOMs and EOMs typically have modulation frequencies in the 10s or 100s of MHz.

The faster of the two methods is electro-optic modulation, and the fastest EOMs have modulation
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frequencies of a few hundred GHz [82, 83, 84, 85, 86]. In contrast, molecular modulators can have

modulation frequencies exceeding 100 THz, more than three orders of magnitude higher than the

fastest EOMs [32]. In this experiment, the modulation frequency is 17.6 THz, a relatively modest

frequency for a molecular modulation, yet still orders of magnitude higher than other modulation

methods. The large modulation frequency means that the wavelengths of the sidebands are sub-

stantially different from the incident mixing wavelength. As described below, a mixing beam at a

wavelength of 785 nm is modulated by our modulator to produce frequency up-shifted and down-

shifted sidebands at wavelengths of 750 nm and 823 nm, respectively. Furthermore, while AOMs

and EOMs typically can modulate light whose wavelength ranges over 10s or 100s of nanometers,

molecular modulators can, as mentioned above, modulate light of any wavelength in the optical

spectrum.

Just as high modulation frequencies and broadband input capabilities set molecular modulation

apart from other modulation methods, the use of an independent mixing beam sets this experiment

apart from other CW molecular modulation experiments. In other CW molecular modulation ex-

periments, both from our lab (Chapters 7 and 8) and from other research groups (Chapter 3),

Raman sidebands are generated from the coherence mixing with the pump or the Raman sideband

beams. These beams are generally resonant with the cavity, and they typically have very high

intracavity intensities. Thus, in these works, beam modulation only occurs at very specific wave-

lengths. This is a significant limitation. A device that can modulate any independent mixing beam,

even at wavelengths that are not necessarily resonant with the cavity, has much more versatility.

The experiment described in this chapter is the first to demonstrate such modulation: a separate,

non-resonant laser beam makes a single pass through a cavity, and frequency sidebands shifted by

17.6 THz are produced.

As with our other experiments, we build up molecular coherence in a high-finesse cavity. We

drive this coherence with two intense, resonant laser fields: the seed laser that is locked to the

cavity that serves as the pump beam, and the Stokes beam that starts from Raman lasing in the

cavity. In this case, the Raman scattering occurs on the |v = 0, J = 1〉 to |v = 0, J = 3〉 rotational

transition in molecular hydrogen, H2. This transition has a frequency of 17.6 THz, which gives us
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our modulation frequency. (Note that if one uses the difference of the values in Table F.3, one gets

17.5 THz for this transition frequency. This discrepancy is due to rounding in the table values.) The

pump laser is at a wavelength of 1064 nm, and the Stokes beam is at 1135 nm. With the molecules

prepared in a coherent state by the strong, resonant pump and Stokes beams, a third, weaker and

non-resonant laser beam at a wavelength of 785 nm is sent through the system. This mixing beam

is modulated by the coherently rotating molecules through four-wave mixing, and this produces

sidebands at wavelengths of 750 nm and 823 nm. The mirrors of the cavity are not highly reflective

at 785 nm, and thus this modulation is produced in a single pass through the system. Figure 9.1

illustrates this process.

Figure 9.1 Mixing Experiment Overview (a) We drive hydrogen molecules to a coherent
rotational state using intense pump and Stokes beams inside a high-finesse cavity. A third laser
beam at a wavelength of 785 nm passes through the system and is modulated by the coherently
rotating molecules through four-wave mixing. This generates sidebands at 823 nm and 750 nm,

17.6 THz from the mixing laser frequency. At the bottom of the figure, plots of intensity as a
function of wavelength display the spectral components at the input and the output of the cavity,
highlighting the effects of modulation. (b) This figure shows the relevant energy diagram for the
process described in (a). It is very similar to the four-wave mixing process shown in Figure 7.2,
but it is an independent mixing beam (λmixing), rather than the pump beam, that mixes with the

coherence generated by the pump (λpump) and Stokes (λStokes) beams to produce a sideband
(λsideband). νmod is the modulation frequency, which is 17.6 THz. The σ− polarization of the

mixing beam preferentially produces the frequency up-shifted sideband at a wavelength of 750
nm. Not shown is the opposite case, in which a σ+ polarization preferentially generates a

frequency down-shifted 823 nm beam.

The experimental arrangement is very similar to those described in Chapters 7 and 8. As

mentioned, the seed laser is at a wavelength of 1064 nm, and it is amplified by a ytterbium fiber
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amplifier. The Pound-Drever-Hall locking electronics are the same as those described in Figure 5.7.

The cavity used is, with some minor modifications, the 75-cm-long cavity described in Appendix

E. The cavity is not cooled with liquid nitrogen for this experiment. The Raman transition used

is the |v = 0, J = 1〉 to |v = 0, J = 3〉 rotational transition in molecular hydrogen. Note that

we choose hydrogen over deuterium for this experiment. There are two main reasons for this,

both of which are related to the fact that hydrogen has a larger energy spacing between rotational

levels, as shown by the tables in Appendix F. This larger spacing results in molecules that are

more concentrated in fewer lower rotational energy levels. Thus, we have a larger population in a

single rotational state, the |v = 0, J = 1〉 state in hydrogen, than we would with any single state in

deuterium. (See Figure 6.8.) This larger spacing also means that the modulation frequency of our

modulator is larger.

To increase the efficiency of the desired rotational Raman scattering, we circularly polarize

the incident pump beam. When the pump laser is locked to the cavity, we observe CW Raman

lasing of the Stokes beam with opposite circular polarization, as depicted in Figure 9.1 (b). (See

the discussion around Figure 10.1 for more explanation of the connection between polarization

and sideband generation.) Figure 9.2 displays the transmitted pump and Stokes powers through

the cavity as functions of the incident pump power. For these data, the hydrogen gas pressure in

the cavity is 0.33 atm. At the highest incident power, we observe 2 mW of pump and 39 mW of

Stokes power transmitted through the output mirror.

The solid lines in Figure 9.2 are fits to the data based on the Raman laser model developed by

Carlsten and colleagues [47]. The lines are fit to the data using several adjustable parameters. The

fit shown uses Rp = 0.9998 and RS = 0.9992 for the reflectivities of the mirrors at the pump and

at the Stokes wavelengths, and Tp = 80 parts per million (ppm) and TS = 65 ppm for the mirror

transmittance at the two wavelengths. The plane-wave gain coefficient, which helps to determine

the Raman gain for the Stokes beam, is α = 4.4 × 10−9 cm/W. (The plane-wave gain coefficient

is related to the cross-sections of the stimulated Raman scattering and the dephasing of the Raman

medium. See the appendix of the article by Tsunemi and colleagues for more details on the gain
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Figure 9.2 Pump and Stokes Output These plots display the pump and the Stokes output powers
as functions of incident pump power. The Raman lasing medium is molecular hydrogen with a

gas pressure of around 1
3

atm at room temperature. The Raman scattering occurs on the
|v = 0, J = 1〉 to |v = 0, J = 3〉 rotational transition. The roughly constant pump output and the

increasing Stokes output are characteristic of the Raman lasing process used to generate the
Stokes beam. (See Figures 7.1 and 7.3 for other examples.) The points are experimental data and
the solid lines are theoretical best fit curves based on the Raman lasing model developed by the

Carlsten group. (See main text.) Note that the vertical scales in the two plots are different.

coefficient [87].) These parameters do not yield an exact fit to the data; more precise data and

further calculations are needed to gain more confidence in the accuracy of the parameter values.

The data above are taken with a gas pressure of 0.33 atm, but we investigate Raman lasing at

pressures ranging from 0.05 to 1.5 atm. We observe that an increase in pressure is accompanied

by a reduction in the transmitted pump and Stokes powers. For example, at a pressure of 0.08 atm,

the highest transmitted pump and Stokes powers are 11 mW and 69 mW, respectively, whereas

at 1.5 atm, these quantities are 1.2 mW and 18 mW. This drop in Stokes power is qualitatively

consistent with the model, as the output Stokes power is inversely proportional to the square root

of the Raman gain constant, which increases with increasing pressure [47, 87]. The decreasing

pump power may be due to a decrease in the effectiveness of the locking circuit, which is disrupted

more at higher gas pressures by the temporal dynamics of the Raman lasing process.

We next discuss modulating the mixing beam with the molecular coherence that is established

by the intense intracavity pump and Stokes fields. As shown in Figure 9.3, the source of the

mixing beam is a 785 nm ECDL whose output is amplified by a semiconductor tapered amplifier.
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Around 100 mW of this mixing beam is incident on the cavity. (The mixing beam intensity is

significantly lower than the 10s of kW/cm2 circulating intensities of the driving lasers. Thus, the

mixing beam does not noticeably interfere with the established molecular coherence. Although it

is not currently an issue, in principle the affect of the mixing beam on the coherence does limit

the maximum mixing beam intensity.) Although the modulator can modulate an arbitrarily weak

beam, the mixing beam is amplified to increase the optical power of the generated sidebands to

more easily detectable levels. The mixing beam is focused to a Gaussian waist of 420 µm at the

center of the cavity. The cavity mode waists of the pump and the Stokes beams are 810 µm and 836

µm, respectively. The overlap and relative size of these beam waists is important. As discussed

in Section 2.1, the Raman coherence is proportional to the product of the pump and the Stokes

electric fields. The strongest fields, and thus the highest coherence, is located near the optical axis

at the center of the Gaussian beams. To achieve maximum efficiency, we want the mixing beam to

travel through this region of maximum coherence.

We detect the modulation by coupling the transmitted 785 nm mixing beam to an optical spec-

trum analyzer. (Optical notch (band-stop) filters are used to decrease the amount of 785 nm light,

which makes the much weaker sidebands easier to see.) As shown in Figure 9.1, if the mixing

beam has the same (opposite) circular polarization as the pump, the frequency down-shifted (up-

shifted) sideband is produced. This is due to angular momentum selection rules, as discussed in

Section 7.1 and near Figure 10.1. In our experiment, because the mixing beam is combined with

the pump beam using polarization-selective optics, we do not have independent control of the mix-

ing beam polarization. The mixing beam is elliptically polarized due to the imperfect affect that a

quarter-wave plate meant for 1064 nm light has on the 785 nm beam. This elliptically polarized

mixing beam produces both up-shifted and down-shifted sidebands at wavelengths of 750 nm and

823 nm. The power ratio of these sidebands is P750/P823 ≈ 3.

Figure 9.4 shows the fraction of the mixing power that is converted into the frequency up-

shifted sideband as a function of the incident pump power. The hydrogen pressure for this exper-

iment is 0.33 atm. The highest conversion efficiency that we achieve is 2.3 × 10−6. We define

conversion efficiency as the ratio of the transmitted sideband power (P750
out) to the incident mixing
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Figure 9.3 Mixing Experiment Schematic This figure shows the experimental schematic for the
mixing experiment. Much of it is the same as the basic schematic of Figure 4.1. We seed our

experiment with a custom-built external cavity diode laser (ECDL). The continuous-wave (CW)
beam is modulated by an electro-optic modulator (EOM) so that it can be used in a

Pound-Drever-Hall locking scheme. The ECDL output is on the order of 10 mW, and this seeds a
ytterbium fiber amplifier (Yb FA). The output of the Yb FA is up to 30 W of CW power in a

single spatial mode and a single frequency mode. The Yb FA output is circularly polarized by a
quarter-wave plate (λ/4) and coupled to a high-finesse cavity (HFC) using a mode-matching lens
(MML). Raman scattering in the HFC generates a Raman Stokes beam, which also resonates in

the HFC. A glass slide (GS) picks off part of the reflection from the cavity and sends the signal to
the locking circuit through a photodiode (PD). An independent mixing beam with a wavelength
of 785 nm is generated by a separate ECDL and amplified by a semiconductor tapered amplifier
(TA). The amplified beam is overlapped with the pump beam using a half-wave plate (λ/2) and a
polarizing beam splitter (PBS). The mixing beam travels through the cavity and mixes with the
coherence from the pump and Stokes beams to generate frequency sidebands through four-wave

mixing. The mixing beam is not resonant with the cavity so the modulation occurs in a single
pass through the system.

beam power (P785
in ). As mentioned above, due to the ellipticity of the polarization of the mixing

beam, roughly three times as much power is converted to the frequency up-shifted 750 nm side-

band as is to the frequency down-shifted 823 nm sideband. The fraction of total power converted

into both 750 nm and 823 nm light is about 3 × 10−6. We observe efficiencies within a factor of

two of those in Figure 9.4 for gas pressures between 0.05 and 1.5 atm. At a pressure of 0.08 atm,

the modulation efficiency is only 30% lower than shown in the figure. Although the conversion
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efficiency is low, this is the first experiment in which molecules have been driven to a sufficiently

coherent state by CW lasers that they could be used for CW modulation of an independent laser.

Furthermore, as discussed in Section 7.2, the modulation process is coherent, and as a result, the

mixing beam and the two sidebands have a well-defined, though initially unknown, relative phase.

This phase can be detected and manipulated using a phase mask, and these three beams can be

used to synthesize simple optical waveforms.

Figure 9.4 Mixing Experiment Conversion Efficiency This figure shows the conversion efficiency
of the 785 nm mixing beam to the 750 nm sideband as a function of the input pump beam power.

We define conversion efficiency to 750 nm light as the ratio of the transmitted sideband power
(P750
out) to the incident mixing beam power (P785

in ). The conversion to the frequency down-shifted
823 nm sideband, which occurs simultaneously, is about 1

3
as efficient. This is due to the elliptical

polarization of the mixing beam. The hydrogen pressure in the cavity is 0.33 atm for this
experiment.

One of the key features of our molecular modulator is that it can be used to modulate any fre-

quency within the optical region of the spectrum. The large transparency window of the hydrogen

molecules (which is related to the large single-photon detuning discussed in Subsection 1.2.3) and

the low operating gas pressure (which leads to low dispersion) make this possible. H2 molecules

are not infrared-active, and the first electronic resonance occurs in the Lyman band at a wavelength

of 111 nm, and thus they are transparent to much of the optical spectrum. Figure 9.5 shows the

predicted conversion efficiency of our modulator to the frequency up-shifted sideband. The plot

shows the calculated efficiency over a wavelength range of 120 nm to 10 µm at gas pressures of
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0.33 atm (solid red line) and 0.08 atm (dashed green line). We assume optimal polarization of the

mixing beam for these calculations.

Figure 9.5 Mixing Conversion Efficiency as a Function of Wavelength This figure shows the
predicted conversion efficiency of our molecular modulator as a function of the wavelength of the

mixing beam. The conversion efficiency is defined as the ratio of the transmitted power of the
frequency up-shifted sideband (Psidetrans) over the incident power of the mixing beam (Pmixinc ). The
solid red line is the efficiency with a hydrogen pressure of 0.33 atm, and the dotted green line is
the efficiency with a hydrogen pressure of 0.08 atm. The conversion efficiency increases with

decreasing mixing wavelength for most of the optical region of the spectrum. At short
wavelengths, however, phase-mismatch between the sideband and the mixing beam starts to play
a role, and that creates a sharp drop-off in the efficiency. The vertical line marks the mixing beam

wavelength used in our experiment.

To calculate the efficiency, we use the matrix elements and energy levels of the ro-vibrational

levels in the Lyman and Werner bands [88] and calculate the dispersion and Raman coupling of

H2 at different wavelengths. We then use these results to numerically solve propagation equations

that describe the generation of the sideband from the mixing beam. (See Equation 2.33 for the

propagation equation and Appendix C for more details.) Diffractive effects and consideration of

the mode overlap of the mixing beam with the pump and the Stokes beams are also taken into

account in the calculations.

Generally, as the wavelength of the carrier beam becomes shorter, one expects an increase

in modulation efficiency. There are several reasons for this. With a decrease in wavelength, the

frequencies get closer to electronic resonances (that is, the single-photon detuning decreases), and

thus the Raman interaction is stronger. A decrease in wavelength also means less divergence of the
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mixing beam, and hence better overlap with the pump and the Stokes cavity modes in the cavity. As

mentioned above, better overlap means stronger interaction. Finally, as seen in Equation 2.33, the

propagation equation scales linearly with frequency, so shorter wavelength means higher frequency

and thus stronger Raman interaction. The general trend of increasing efficiency with decreasing

wavelength is evident in Figure 9.5.

The figure also illustrates that this trend abruptly ends a certain wavelength, after which the

efficiency drops sharply. The drop is due to the sideband-mixing beam phase-mismatch becoming

a significant factor. Dispersion, and thus phase-mismatch, is less of an issue at lower pressures,

and so the phase-mismatch drop-off with 0.08 atm of H2 happens at a shorter wavelength than with

0.33 atm of H2 .

It is important to note that Figure 9.5 represents the maximum usable bandwidth of our modu-

lator. It does not take into account the transmittance of the cavity mirrors nor that of the vacuum

chamber windows. In our experiment, the mirrors and windows are made of a fused silica sub-

strate that transmits well in the region 170 nm - 3 µm. Other wavelengths experience significant

absorption traveling through the mirrors and the windows. If our modulator were to be used for

wavelengths outside of this spectral region, we would need a different substrate for the optics or

different geometries for overlapping the mixing beam with the cavity modes.

In these calculations, we also calculate the coherence, ρab. (To calculate the coherence, we

numerically solve the Schrödinger Equation of the Raman system (Equation A.123) to find ca

and cb. The product cac∗b is the coherence.) As discussed around Equation 2.45, our modulator

would be maximally efficient with a coherence value of |ρmaxab | = 0.5. Our current experimental

coherence value is |ρab| ≈ 6.7 × 10−5. Modulation efficiency is proportional to |ρab|2. Thus, this

low coherence explains the low modulation efficiency in this initial mixing experiment. Although

the efficiency is low, this experiment has demonstrated the feasibility of CW molecular modulation

of an independent mixing beam. See Section 11.1 for further discussion of coherence and steps we

are currently taking to increase the efficiency of our modulator.
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Chapter 10

A Tunable, Coherent Terahertz Source - Simulations

In this chapter we use computer simulations to explore one possible application of the molec-

ular modulator described in Chapter 9: a tunable source of coherent terahertz (THz) radiation

[42]. The proposed THz source is based on the frequency down-shifting of an infrared laser using

highly-coherent molecular vibrations. The source could operate in either the pulsed or the CW

regime, and it would be tunable over much of the THz region of the spectrum (1 - 10 THz). In the

pulsed regime, we predict average output powers of order 10 mW and peak powers approaching

1 MW. In the CW regime, we predict powers exceeding 100 µW with spectral linewidths on the

hertz level.

The THz region of the electromagnetic spectrum is sometimes referred to as the terahertz gap,

as it has proven difficult to develop light sources at these frequencies. Despite the difficulties,

interest in THz radiation sources has continued to grow over the last two decades. There is an

extensive list of potential applications of THz sources in a variety of fields including communica-

tions, bio-technology, quality control, and remote sensing and imaging [89]. Although significant

advances have been made in recent years [90], including CW THz generation [91, 92], obtaining a

high-power and widely-tunable coherent source of THz radiation remains a challenging task.

In this chapter, we propose a novel method of producing widely tunable THz radiation: molecu-

lar modulation. Four-wave mixing in a coherently prepared molecular gas can be used to frequency

down-shift an infrared beam to the THz range. As shown in Figure 10.1, the THz generation pro-

cess is very similar to the four-wave mixing process of Figure 7.2. Intense pump (Ep) and Stokes

(ES) beams drive a Raman transition and build up coherence between molecular ro-vibrational

states |a〉 and |b〉. Then an independent mixing beam (Em) mixes with the coherence to generate
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a frequency down-shifted sideband (ETHz). The key is that the mixing beam is chosen to be at

a frequency very close to the Raman transition frequency. (Recall that single photon excitations

between the ro-vibrational levels are dipole forbidden.) This means that the generated sideband,

ETHz, has a very low frequency and a long wavelength. With an appropriately chosen mixing beam

frequency, this frequency can be in the THz range. Furthermore, the frequency of the mixing beam

can be tuned to tune the frequency of the sideband. Thus, as discussed in more detail below, we

can generate a wide range of THz frequencies. The predicted combination of peak output power

and tuning range of this proposed THz source exceeds the capabilities of existing devices [89, 90].

Figure 10.1 Terahertz Generation through Four-Wave Mixing This figure illustrates a four-wave
mixing process that could be used to produce tunable THz radiation using molecular modulation.

Intense pump (Ep) and Stokes (ES) beams drive a Raman transition and build up coherence
between molecular ro-vibrational states |a〉 and |b〉. Then an independent mixing beam (Em)

mixes with the coherence to generate a frequency down-shifted sideband (ETHz). The key is that
Em is chosen to be at a frequency very close to the Raman transition frequency. With an

appropriate choice of mixing frequency, the generated sideband, ETHz, can have a frequency in the
THz range. This THz frequency is tuned across the THz region by tuning the mixing beam

frequency.

As mentioned at the end of Section 7.1 and in the discussion of Figure 9.1, polarization can

be used to preferentially generate certain sidebands [71]. When the driving beams are oppositely

circularly polarized, the generation of higher-order Stokes and anti-Stokes beams is suppressed

due to angular momentum selection rules. In this case, by using a mixing beam with the same (or
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opposite) circular polarization as the pump beam, one can preferentially generate the frequency

down-shifted (or up-shifted) sideband. Thus, by using an infrared mixing beam with the same

polarization as the pump, we can preferentially generate the frequency down-shifted sideband in

the THz regime. In this way the molecular medium is utilized as an efficient frequency converter

[71]. As mentioned in Chapter 9, the mixing process is a linear function of the mixing beam

intensity, and thus the frequency converter works with an arbitrarily weak mixing beam.

We will examine two different schemes for generating THz radiation through molecular modu-

lation, both of which use realistic experimental parameters. The two schemes are shown in Figure

10.2. In the first scheme, shown in Figure 10.2 (a), we propose using Q-switched pulsed pump and

Stokes lasers to drive molecular coherence in a deuterium-gas-filled cell. An independent pulsed

mixing beam then passes through the cell and is frequency down-shifted by this coherence, and

pulsed THz radiation is produced. Figure 10.2 (b) shows the second scheme, which is similar to

our experiment described in Chapter 9. CW pump and Stokes beams first establish a CW molecu-

lar coherence inside a high-finesse cavity. Then a CW mixing beam that is not necessarily resonant

with the cavity (that is, the mirrors do not have a high reflectivity at the mixing laser wavelength)

is frequency down-shifted in a single pass to produce CW THz radiation.

Figure 10.2 Terahertz Generation Schematics This figure displays the two schemes we propose
for generating coherent THz radiation. In both schematics, the solid gray rectangles are mirrors,
and the pairs of gray lines are partially transmissive mirrors used to combine beams. (a) The first

scheme is a pulsed THz source. Q-switched pump and Stokes lasers are loosely focused on a
Raman cell to drive molecular coherence in the deuterium inside. An independent Q-switched

mixing laser then passes through the cell and is modulated by the coherence, producing coherent
THz pulses. (b) This second scheme is a CW THz source. CW pump and Stokes beams are

coupled to a deuterium-filled high-finesse cavity. The intense intracavity fields of these resonant
beams drive the molecules to a coherent state. A non-resonant CW mixing beam then passes
through the cavity and is modulated in a single pass, generating coherent CW THz radiation.
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We proceed with a more detailed description of our proposed scheme. Our calculations are

based on the work of Harris and colleagues [21], as described in Chapter 2 and Appendices A - D.

Due to the long wavelength of THz radiation, diffractive effects are important, so we consider

the modulation process in all three spatial dimensions. (Note that this differs from Appendix C,

in which we ignored the diffractive effects. In Appendix C, we dropped terms in the transverse

directions x and y.) We assume near-monochromatic excitation and work with the slowly-varying

envelope ETHz (x, y, z) such that the total THz field ÊTHz is

ÊTHz (x, y, z, t) = Re
{
ETHz (x, y, z) ej(ωTHzt−kTHzz)

}
, (10.1)

where ωTHz is the angular frequency and kTHz = ωTHz
c

is the wave number. x, y, and z are the spatial

dimensions, and t is time. j is the imaginary unit, andRe{...} is the real part of the quantity in the

brackets.

The molecular coherence is established with the intense pump and Stokes laser beams, Ep and

ES . We take the mixing beam, Em, to be sufficiently weak so that it does not interfere with the

coherence preparation. (This is true as long as the mixing beam intensity is much lower than

the driving beam intensities.) Furthermore, due to low conversion efficiency, the mixing beam

intensity is nearly constant. Thus, we ignore any depletion of the mixing laser as a result of the

generation of the THz sideband. For this THz sideband generated through four-wave mixing of the

coherence and the mixing beam, the slowly-varying-envelope propagation equation is

∂ETHz
∂z

+
j

2kTHz

(
∂2ETHz
∂x2

+
∂2ETHz
∂y2

)
= −jη}ωTHzN (aρaaETHz + dρbbETHz + bρabEm) ,

(10.2)

where η =
√

µ0

ε0
, N is the molecular number density, and } is the reduced Planck’s constant

[93]. The populations of the ro-vibrational Raman states |a〉 and |b〉 are given by ρaa and ρbb,

the diagonal density matrix elements. ρab is the molecular coherence, the off-diagonal matrix

element of the density matrix. (See Appendix D for more details on the matrix elements.) The

coupling and dispersion constants, a, d, and b, determine the refractive index of the gas and the

Raman polarizability. As shown in Chapter 2, these constants are calculated by summing over the
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many ro-vibrational levels in the excited electronic configuration using the corresponding matrix

elements and detunings. (See Equations 2.16 - 2.18.)

As discussed in Section 2.2, we assume that the molecular system is prepared adiabatically

to a state that is smoothly connected to the unperturbed ground state. Adiabatic preparation can

be achieved with a small two-photon detuning from the Raman resonance. (See Equation 2.3 for

a definition of the two-photon detuning.) The driving two-photon Rabi frequency for the Raman

excitation is B = bpEpE
∗
S , where bp is the Raman coupling constant at the pump wavelength. (See

Equations 2.13 and 2.18.) The quantities A/2 and D/2 are the Stark shifts of the Raman levels |a〉

and |b〉 due to the intense pump and Stokes beams. (See Equations 2.12 and 2.15.) Recall that θ

and φ are defined by the following relationships (Equations 2.28 and 2.29):

θ = tan−1

(
2 |B|

A−D + 2∆ω

)
, (10.3)

and

B = |B|jφ . (10.4)

With these definitions, the adiabatic solution for the density matrix elements of the Raman transi-

tion are given as in Equations 2.38 - 2.40:

ρaa = cos2

(
θ

2

)
, (10.5)

ρbb = sin2

(
θ

2

)
, (10.6)

and

ρab =
1

2
sin (θ) ejφ. (10.7)

We perform our numerical simulations using MathWorks Matlab. We calculate the conversion

efficiency from the mixing beam to the generated THz wave by numerically integrating Equation

10.2 together with the adiabatic solution of Equations 10.5 - 10.7 on a three dimensional x-y-z

grid. We consider scattering off of the |v = 0, J = 0〉 to |v = 1, J = 2〉 ro-vibrational transition

in molecular deuterium at a transition frequency of 94.8 THz. (See Table F.2. Also note that this

transition is different than those previously discussed. We now consider a change in vibrational
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state and rotational state. The change in rotational state is due to the circular polarization of the

driving lasers.) We assume the molecules are cooled to the rotational ground state. This could be

achieved using a liquid nitrogen bath, as in our experiments. We take the pump and the Stokes

laser beams to be at wavelengths of 1042 nm and 1554 nm. If the mixing beam wavelength is

tuned over the range of 3128 nm to 2860 nm, the 94.8 THz modulation frequency means that the

generated THz radiation is tuned over the frequency range of 1 - 10 THz, covering the terahertz

gap.

We analyze THz generation with realistic experimental conditions for the two schemes de-

scribed in Figure 10.2. In both the pulsed and the CW schemes, we take the pump, the Stokes,

and the mixing beams to have Gaussian spatial profiles with beam waists of 1 mm. We take into

account the refractive index and the dispersion of the molecular gas for all the beams. In doing

so, we include the effects of phase-mismatch as the THz wave is generated along the cell. In both

cases we take the molecular interaction region (the cell for the pulsed case, and the cavity for the

CW case) to be 50 cm long, and we assume a deuterium number density of N = 2.69× 1019/cm3

(equivalent to 1 amagat). The conversion efficiency is maximized when the molecules are in a

maximally coherent state, |ρmaxab | = 0.5.

Figure 10.3 (a) shows the conversion efficiency from the mixing beam to the THz beam for

the pulsed source. For this calculation, we take both the pump and the Stokes beams to have

a pulse energy of 1 J with a 10 ns pulse duration. The peak power is 100 MW and the peak

intensity at the focus is 6.36 GW/cm2 for both laser beams. We take the two-photon detuning to

be ∆ω = 2π × 0.5 GHz. For these parameters, the molecular coherence achieved at the focus is

|ρab| = 0.3. The conversion efficiency from the mixing beam to the generated beam varies from

3 × 10−5 to 2 × 10−2 as the generated frequency is tuned over the terahertz gap from 1 THz to

10 THz. As discussed with Figure 9.5, we observe a trend of increasing efficiency for increasing

frequency (decreasing wavelength). If we assume a mixing beam with the modest parameters of

100 mJ per pulse at a 10 Hz repetition rate, these efficiencies would produce an average power of

30 µW with a peak power of 0.3 kW at 1 THz. At 10 THz, this would yield 20 mW of average

power with a peak power of 0.2 MW.
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Figure 10.3 Terahertz Source: Calculated Mixing Efficiency This figure shows the simulated
conversion efficiency from the mixing beam to the generated THz beam for a pulsed (a) and a CW
(b) THz source based on molecular modulation. The calculations are based on state-of-the-art, yet

experimentally achievable, parameters. Details about the parameters can be found in the main
text. Note that the vertical scales on the two plots are different.

Figure 10.3 (b) shows the conversion efficiency from the mixing beam to the THz beam for

the CW source. For this calculation, we take our pump and Stokes beams to both have powers of

200 W. (Such single-mode CW lasers are commercially available. They are based on ytterbium-

and erbium-doped fiber amplifiers similar to the ones in our experiments.) We assume the cavity

mirrors have reflectivities of 99.995% at both of these wavelengths. (This is similar to the re-

flectivities of our mirrors.) With these parameters, when the lasers are locked to the cavity, the

intracavity circulating power for each laser is 4 MW and the circulating intensity at the focus is

255 MW/cm2. (Meng and coworkers have shown that high-quality dielectric coatings can handle

over 100 MW/cm2 of optical power without sustaining damage [94].) For this CW case, we take

the two-photon detuning to be ∆ω = 2π× 0.25 GHz. The intracavity intensities drive a molecular

coherence that reaches |ρab| = 0.024 at the beam waist. This yields a conversion efficiency that

varies from 1.8× 10−7 to 1.4× 10−4 as the output is tuned from 1 THz to 10 THz. This efficiency

means that a 1 W mixing beam would produce a CW output power of 0.2 µW to 0.1 mW of THz

radiation as the output frequency is tuned over this frequency range.
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In this CW case, it is important to note that the frequency linewidth of the generated THz wave

is determined by the linewidth of the interacting lasers, and not by the linewidth of the Raman

transition. Because the pump and Stokes beams are locked to the longitudinal modes of a high-

finesse cavity, their linewidths can be made very narrow. This means that the linewidth of the

molecular oscillations can also be made very narrow. As a result, if a frequency stabilized mixing

laser beam were used, it would be possible in principle to generate THz radiation with 1-Hz-level

linewidths.

We conclude this chapter with Figure 10.4, which depicts the THz beam generated by one of the

molecular modulation schemes described above. Figure 10.4 (a) is a two-dimensional false-color

intensity plot for a generated 1 THz beam from the THz source. Figure 10.4 (b) is a cross-section

of the profile taken at the output of the modulator.

Figure 10.4 Terahertz Beam Profile This figure displays a simulated 1 THz beam generated by
one of the molecular modulation schemes described above. (a) This is a two-dimensional,

false-color intensity plot for the generated THz beam inside of the modulator. Note that the
relative horizontal scale has been greatly expanded to show details. The propagation direction is

upwards, and the output of the modulator is at the top of the image. (b) This is an intensity profile
(solid red line) of one of the transverse directions of the THz beam at the output of the modulator.
Due to the significant divergence of the THz wave, the output beam is not exactly Gaussian. For
comparison, a Gaussian intensity profile with the same width is also plotted (dashed blue line).
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Chapter 11

Current Work and Future Directions

In this thesis, we have described the development of a CW molecular modulator based on

stimulated Raman scattering in a high-finesse cavity. We have demonstrated that the modulator

can be used to generate a broad, coherent spectrum that spans nearly two octaves of optical band-

width. We have shown that the spectral components have Gaussian spatial profiles and narrow

frequency linewidths. Furthermore, we have verified that our modulator is capable of modulating

an independent mixing beam in a single pass through the system. We have demonstrated modula-

tion frequencies up to 10s of THz. We have also discussed possible applications of this molecular

modulation technology, including the potential for generating coherent THz radiation.

In this final chapter, we examine two on-going research projects and then discuss one plan for

the near future. We first discuss our efforts to improve the efficiency of our modulator by using

an independent Stokes beam to drive the molecular coherence. We present motivations for this

change and the experimental schematic, and we discuss some preliminary results and current chal-

lenges. Next we briefly discuss recent efforts to expand the independent mixing beam experiment

of Chapter 9 to vibrational transitions. Initial results indicate that we can modulate a mixing beam

by 89.6 THz in a single pass through our optical system. We close this chapter with a discussion of

an exciting upcoming stage of our experiment: using our modulator to broaden the already broad

spectrum of a titanium-sapphire laser.
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11.1 Independent Stokes Beam

All of our experiments described in this thesis are based on building up a strong molecular

coherence. We generate this coherence by driving two-photon transitions using intense intracavity

pump and Stokes beams. The coherence is approximately proportional to the product of the pump

and the Stokes fields (See Equations 2.13 and 2.41.), so in order to maximize coherence, it is

desirable to have high intensities for both the pump and the Stokes beams. The limitations on our

intracavity pump and Stokes intensities are one of the main obstacles to improving our coherence

and thus our modulation capabilities.

Our cavity has a high finesse for both the pump and the Stokes wavelengths, and both lasers

are simultaneously resonant with the cavity. However, our intracavity intensities are limited by the

process by which we are generating the Stokes beam. As discussed in Section 7.1 and elsewhere,

we are producing the Stokes beam through Raman lasing in the cavity. Because the energy for

the Stokes beam is coming from the pump beam, this severely limits our pump intensities. This is

evident in how the transmitted pump power plateaus once the Stokes generation begins. After that

point, any additional incident pump power goes into generating more Stokes power, rather than

increasing the transmitted pump power. See Figure 7.1 for an example of this behavior. (Recall

that the transmitted power is directly related to the circulating power through the transmittance

of the cavity mirrors.) We have shown that Raman lasing is an effective method of producing a

Stokes beam. However, in order to maximize coherence, we would like to be able to have strong

circulating Stokes intensities without sacrificing any pump intensity. Our solution to this issue is

to work with an independent Stokes beam, as shown in Figure 11.1. The mixing beam in the figure

is shown at a wavelength of 785 nm, but as discussed in Chapter 9, this arrangement can be used

to modulate a wide range of mixing beams.

Because coherence is proportional to the product of the pump and the Stokes fields, a scheme

that does not rely on Raman lasing can significantly improve coherence and thus modulation ef-

ficiency. By tuning the pump frequency and adjusting the cavity length, we can find modes in

which the pump resonates with the cavity, but little to no Raman lasing occurs. In this case, the
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Figure 11.1 Independent Stokes Beam: Experimental Schematic This figure illustrates the
experimental arrangement for our molecular modulation experiments with independent pump and
Stokes beams. It is very similar to the mixing beam schematic seen in Figure 9.3, but now along
with the pump laser, amplifier, and optics, there is an analogous arrangement for the independent

Stokes laser. Both lasers come from extended cavity diode lasers (ECDLs), and they are
modulated for frequency locking purposes by electro-optic modulators (EOMs). They are then

amplified by fiber amplifiers (FAs), ytterbium-doped for the 1064 nm pump laser, and
erbium-doped for the 1560 nm Stokes laser. The two amplified beams are simultaneously coupled
to the high-finesse cavity (HFC) by mode-matching lenses (MMLs). The glass slides (GSs) pick
off part of the beams, and the photodiodes (PDs) monitor the reflected signals from the cavity for

locking purposes. In this case, the slow feedback of each locking circuit feeds back to the
piezoelectric transducer (PZT) in the associated ECDL, rather than that in the HFC. We found

that the two locks interfered with one another more when one was feeding back to the HFC mirror
PZT and one was feeding back to the ECDL PZT. (See Section 5.2 for more details on the locking
circuit.) Once the independent pump and Stokes beams establish coherence by driving molecular
transitions in the deuterium in the cavity, the mixing ECDL produces a beam that is amplified by
a tapered amplifier (TA) and then overlapped with the other beams using a half-wave plate (λ/2)
and a polarizing beam splitter (PBS). The beam is modulated in a single pass through the HFC.
The modulated mixing beam is picked off by the GS, spatially dispersed using a prism, and sent

to an optical detector.

intracavity pump intensity continues to increase with increasing incident pump power. The Stokes

beam is then produced independently as shown in Figure 11.1. The Stokes beam is produced in a

similar manner to the pump beam, and it has similarly high intracavity intensities.
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If we extrapolate the behavior of the pump power before the Raman threshold is reached, this

gives us a rough approximation of how the pump would behave in the absence of Raman lasing.

Figure 11.2 illustrates this point for the data from one of the plots of Figure 7.3. This rough estimate

suggests that the intracavity pump intensities would be around 140 mW at 16 W of incident pump

power. This is about 3.5 times higher than with Raman lasing depleting the pump. If we assume

that our independent Stokes laser would have similar performance, this also increases our Stokes

circulating intensity by a factor of around 1.75. (This is a conservative estimate, as we have found

the 1560 nm light to have higher intracavity intensities than 1064 nm light for similar incident

powers.) Intensity is the magnitude of the electric field squared, and coherence is proportional to

the product of the electric fields. Thus, to find the improvement in coherence, we take the product

of the square roots of these intensity improvement factors. This yields a coherence that is improved

by a factor of
√

3.5×
√

1.75 ≈ 2.5. The form of the propagation equation (Equation 2.33) suggests

that the generated field is proportional to coherence. The generated intensity is then proportional to

the coherence squared. This means that a factor of 2.5 factor of improvement in coherence yields

a factor of 2.52 = 6.25 factor of improvement in mixing efficiency. We note that the intracavity

pump intensity continues to increase linearly with increasing incident pump power for the non-

Raman-lasing case, and the pump intensity stays relatively constant for the Raman-lasing case.

This means that the improvement in coherence would be even larger for higher incident pump

values.

We have experimentally implemented the scheme illustrated in Figure 11.1, and we have some

preliminary data, though we have not yet incorporated the mixing beam. Although it is challenging,

we can simultaneously lock the 20 W pump and Stokes beams to the HFC. The quality of the lock,

as is the case with all of our experiments, depends on the amount of gas in the cavity. The best

simultaneous locks last on the order of 10 s before one of the lasers falls out of resonance. While

this is definitely long enough to perform our current experiments, we would like to improve the

performance of our simultaneous lock. We have begun some initial investigations of the time

dynamics of the dual locks, but this has so far not yielded any conclusive information.
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Figure 11.2 Independent Stokes Beam Extrapolation Estimate This figure displays the Raman
lasing data of one of the plots of Figure 7.3. The red dotted line has been added as a rough

extrapolation of the pump power data at incident powers lower than the Raman lasing threshold.
This extrapolation provides a rough estimate of the behavior of the pump laser in the absence of
Raman lasing. It suggests that there would be about 140 mW of pump light transmitted for 16 W
of incident pump light. Assuming similar behavior for an independent Stokes beam, this would
lead to an improvement of about a factor of 6.25 in the mixing efficiency. See text for details.

However, we have seen evidence of coherence generated from the independent pump and

Stokes beams. We monitor the anti-Stokes generation, which comes from the mixing of the pump

beam with the coherence, as a proxy for the coherence itself. Although we attempt to work at

modes that have no Raman lasing, it is challenging to distinguish between anti-Stokes generation

that comes from the pump and the Stokes from Raman lasing and that which comes from the pump

and the independent Stokes. In order to distinguish between the two generation methods, we use a

wavemeter to closely monitor the frequency of the pump and the Stokes seed lasers. With Raman

lasing, it is guaranteed that the frequency of the Stokes beam is separated from the pump frequency

by the modulation frequency (with some variation as discussed in Figure 7.10). With an indepen-

dent Stokes beam, this frequency separation is no longer assured. We have the freedom to tune

the frequency of the Stokes beam, which we do by changing the angle of the feedback grating in

the ECDL. Only when the frequency of the Stokes beam is tuned so that the frequency difference

of the pump and the Stokes beam matches that of the Raman transition can the two lasers build
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up coherence between the Raman states. Thus, only with the correct frequency difference can the

anti-Stokes beam be generated.

The Raman linewidth of the transition is large enough to contain several cavity resonances,

and we can see anti-Stokes generation when lasing in any of the cavity modes within the Raman

linewidth. (The full-width-half-maximum Raman linewidth is a few hundred MHz, and the free

spectral range of the cavity is 200 MHz. The cavity linewidth is on the order of 10 kHz.) The

closer a particular mode is to the Raman resonance, the more anti-Stokes generation we observe,

as illustrated in Figure 11.3.

Figure 11.3 Two-Photon Detuning and Anti-Stokes Generation This figure illustrates how
changing the two-photon detuning, ∆ω, affects the amount of anti-Stokes generation. In each of
the four images, the Stokes laser is tuned to a different cavity resonance (dotted purple line). The
frequency difference between the cavity resonance and the Raman resonance determines ∆ω. The

Raman resonance is the frequency difference between the two ro-vibrational levels (solid black
lines). When the detuning is small, the two-photon transition is close to the Raman resonance,

and thus there is more anti-Stokes generation. The thickness of the anti-Stokes (green and dashed)
arrow represents its relative power, with thicker arrows being higher power. In order to change

∆ω, the frequency of the Stokes beam (blue arrow) is changed to match cavity resonances while
the frequency of the pump beam (red arrow) remains constant.

We tune to different cavity resonances (with different two-photon-detunings) by tuning the

frequency of the Stokes laser while keeping the pump laser frequency constant. By recording

the generated anti-Stokes power at each cavity resonance (that is, at each resonant Stokes laser

frequency), we measure a resonance curve for the Raman transition. Figure 11.4 shows one such

resonance curve. We infer the frequency of the Raman resonance to be the frequency difference

between the pump and the Stokes lasers that leads to the maximum anti-Stokes generation. As an
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aside, we note that this resonance curve method could provide a novel, precise measurement of the

frequency of the Raman transition. If frequency-stabilized pump and Stokes lasers are used, the

frequency of the two-photon transition, and thus the energy splitting of the ro-vibrational levels,

could be determined with high precision.

Figure 11.4 Two-Photon Resonance This figure shows the connection between the two-photon
Raman resonance and the generation of anti-Stokes light. The independent pump and Stokes
beams drive a molecular coherence that mixes with the pump beam to generate an anti-Stokes

beam through four-wave mixing. By changing the frequency of the Stokes beam, we change the
two-photon detuning from the Raman resonance, ∆ω. When the two-photon detuning is small,
the coherence is high, and there is more anti-Stokes generation. By tuning across the Raman
resonance, we generate a resonance curve. A detuning of zero corresponds to the frequency

separation of the pump and the Stokes beams being exactly equal to the frequency of the Raman
transition. Each data point in this experimental plot corresponds to a tuning configuration similar
to those illustrated in Figure 11.3. The full-width-half-maximum linewidth of a few hundred MHz

is roughly what we expect from the Doppler and pressure broadening linewidth contributions
discussed in Section 6.3.

Although the early results have been promising, there are still outstanding issues with this

independent Stokes beam experiment. The first, mentioned above, is the competition between the

Raman lasing Stokes beam and the independent Stokes beam. We have explored the dependence

of both processes on gas pressure, but it appears that both are optimized at pressures of around 0.1

- 0.3 atm. At any given pressure, it is difficult to distinguish how much of the anti-Stokes light

is generated from each process. However, the resonance curve of Figure 11.4 gives us confidence
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that the independent pump and Stokes beam are in fact interacting. Anti-Stokes light generated

from Raman lasing would not show such dependence on the independent Stokes laser frequency.

The fact that we can generate this resonance curve indicates that, although they come from separate

sources, the pump and the Stokes beams are coherent enough to drive this coherent Raman process.

Both lasers have full-width-half-maximum linewidths around 10 kHz due to the high-finesse cavity,

and this ensures that they are at least coherent of timescales of roughly 1
10 kHz = .1 ms.

Another outstanding issue is our inability to observe the dependence of anti-Stokes generation

on the independent Stokes beam power. As mentioned in the beginning of this section, the co-

herence scales as the electric field of the Stokes beam. Thus, we should see a clear increase in

anti-Stokes generation when the Stokes power increases. However, this has not been the case. We

are able to observe anti-Stokes generation with an incident Stokes power anywhere from 100s of

mW to 20 W. There is not a discernible difference in the amount of anti-Stokes generation. We

hypothesize this may be because the independent laser is currently serving only to seed a Raman

lasing process. After the small amount of Stokes light seeds the Raman process, the Raman lasing

takes over and drives the coherence. More work is needed to determine if this is the cause of the

lack of observed power dependence and, if so, what can be done to suppress this Raman lasing.

Despite these challenges, as mentioned above, the independent Stokes beam arrangement holds

great promise for improving the efficiency of our modulator, and this experiment merits further

investigation.

Far below the optimal |ρmaxab | = 0.5, the modulation efficiency roughly scales as IpISN2L2,

where Ip and IS are the intensities of the two driving lasers, N is the number density, and L is

the length of the interaction region. (This comes from Equation 2.44.) We are currently focusing

on improving Ip and IS . As mentioned in Section 7.3, the quality of the cavity lock decreases

with higher densities, and this decreases the intracavity intensities of the beams. Phase matching

also becomes more of a problem at higher densities. There is also a trade-off with increasing the

interaction length. A longer interaction length requires a longer cavity, and a longer cavity requires

more loosely focused beams. Thus, increasing the interaction length also decreases the intensities.



128

A longer interaction length also increases phase matching issues. Because of these complications,

we have decided to focus on improving the intensities.

The pulsed laser modulation experiments discussed in Chapter 3 were performed with near

maximal coherence, |ρab| ≈ 0.5. The experiment of Chapter 9 had a coherence of |ρab| ≈ 6.7 ×

10−5. With the independent Stokes beam experiment, we hope to increase our pump and Stokes

intensities. Because we are no longer relying on Raman lasing, our aim is to achieve intensities

near those that we achieve in an evacuated cavity. This would increase our coherence to |ρab| ≈

1.4×10−3. Working with an independent Stokes beam, along with technical improvements such as

narrowing the linewidths of our ECDLs, improving the spatial coupling of our lasers to the cavity,

and further developing our feedback circuitry could make this goal achievable.

A longer term goal for the project is to achieve a coherence of |ρab| ≈ 1.4× 10−2. By using a

cavity with a smaller mode size (w0 ≈ 200 µm) and higher power (> 100 W) fiber amplifiers, we

aim to achieve intracavity circulating intensities approaching 100 MW/cm2 for both laser beams.

(In the mixing experiment of Chapter 9, the mode size is around 800 µm, and the circulating

intensities are around 0.5 MW/cm2.) While not maximally coherent, such a modulator would yield

a 1% conversion efficiency, which would be sufficient for most applications.

11.2 Independent Mixing Beam Modulation at 89.6 THz

Our current research efforts are focused on recreating the molecular modulation experiments

of Chapter 9 at a higher modulation frequency. We modulate an independent, non-resonant laser

using stimulated Raman scattering in our high-finesse cavity. In a single pass through our modula-

tor, frequency sidebands located 89.6 THz from the mixing laser are produced through four-wave

mixing.

As with the experiment of Chapter 9, the molecules are prepared to a coherent state using an

intense intracavity pump field. The pump field generates the Stokes field through Raman lasing.

Whereas our previous experiment used the |v = 0, J = 1〉 to |v = 0, J = 3〉 rotational transition

in molecular hydrogen, which has a modulation frequency of 17.6 THz, our current experiment

relies on scattering off of the |v = 0, J = 0〉 to |v = 1, J = 0〉 vibrational transition in molecular
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deuterium, which has a modulation frequency of 89.6 THz. The pump laser is at a wavelength

of 1064 nm, and the vibrational Stokes beam is at a wavelength of 1560 nm. As in Chapter

9, the mixing laser is at a wavelength of 785 nm. A modulation frequency of 89.6 THz yields

frequency up- and down-shifted sidebands at wavelengths of 636 nm and 1026 nm, respectively.

In this experiment the light is linearly polarized. This polarization does not preferentially generate

one sideband over the other. However, we have thus far focused on the frequency up-shifted beam.

The higher frequency 636 nm light is generated more efficiently. (See the discussion around Figure

9.5.) It is also further away in wavelength from the powerful pump beam at 1064 nm, and thus is

easier to detect. Figure 11.5 displays an overview of the experiment.

Figure 11.5 Vibrational Mixing Experiment Overview This independent mixing beam modulation
experiment is similar to the one described in Figure 9.1. (a) Inside a high-finesse cavity, we drive

deuterium molecules to a coherent vibrational state using intense pump and Stokes beams. A
third laser beam at a wavelength of 785 nm passes through the system and is modulated by the

coherently vibrating molecules through four-wave mixing. This generates sidebands at 1026 nm
and 636 nm, 89.6 THz from the mixing laser frequency. At the bottom of the figure, plots of

intensity as a function of wavelength display the spectral components at the input and the output
of the cavity, highlighting the effects of modulation. (b) This figure shows the relevant energy

diagram for the process described in (a). It is very similar to the four-wave mixing process shown
in Figure 7.2, but it is an independent mixing beam (λmixing), rather than the pump beam, that

mixes with the coherence generated by the pump (λpump) and Stokes (λStokes) beams to produce a
sideband (λsideband). νmod is the modulation frequency, which is 89.6 THz. We show only the

generation of the frequency up-shifted sideband here, but the light is linearly polarized, so there is
no preferential generation of one sideband over another.

Figure 11.6 shows the experimental arrangement for the vibrational mixing experiment. It is

similar to our rotational mixing experiment shown in Figure 9.3, including the gas pressure, which
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is approximately 1
3

atm, and the mixing beam power, which is on the order of 100 mW. In addition

to the change of Raman medium and transition mentioned above, there are two main changes.

First, we use an optical chopper and lock-in amplifier to aid in the detection of the weak sideband

in the presence of scatter from the significantly stronger pump, Stokes, and mixing beams. Also,

as mentioned above, we use linearly polarized light. See Figure 11.6 for more details.

We are still in the early stages of this experiment, and we do not yet have any definitive data

on the conversion efficiency. However, we have definitively observed the 636 nm sideband. The

optical chopper and lock-in amplifier have proven vital in allowing us to distinguish the sideband

signal from background scattered light. We are still optimizing the experiment, but we are currently

measuring conversion efficiencies from the mixing beam to the frequency up-shifted sideband to

be around 5.5× 10−7. We expect there is a similar amount of power in the frequency down-shifted

sideband. For the same mixing wavelength (785 nm), this is approaching the efficiency of the

rotational mixing experiment of Chapter 9. (See Figure 9.5.) We are confident that this efficiency

can be improved by optimizing the mixing beam alignment and its overlap with the intracavity

pump and Stokes beams. We have begun to optimize this by coupling the tapered amplifier output

through a single-mode optical fiber in order to improve the Gaussian beam shape and to eliminate

some of the amplified spontaneous emission. (This emission has a broad frequency linewidth. It

is essentially wasted power, as it is not converted to the main frequency sidebands at 636 nm and

1026 nm.)

Although there remains much work to be done, this independent mixing beam experiment

shows promise. As with the rotational mixing beam experiment of Chapter 9, this 89.6 THz modu-

lator can modulate light in a large portion of the optical spectrum. With improved efficiency, such

a high-frequency broadband optical modulator would be a unique and powerful tool.

11.3 Future Directions

We conclude with a discussion of one exciting prospect for expanding the utility of our molec-

ular modulator. Throughout this thesis, we have focused on modulating a monochromatic laser

beam. However, as discussed in Chapter 9, the modulator is capable of modulating light over a
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Figure 11.6 Vibrational Mixing Experiment Schematic This figure shows a schematic for our
vibrational mixing experiment. It is very similar to the rotational mixing experiment illustrated in

Figure 9.3. As with our other experiments, the pump laser comes from a custom-built external
cavity diode laser (ECDL) at a wavelength of 1064 nm. The continuous-wave (CW) beam is

modulated by an electro-optic modulator (EOM) so that it can be used in a Pound-Drever-Hall
locking scheme. The ECDL output is on the order of 10 mW, and this seeds a ytterbium fiber

amplifier (Yb FA). The output of the Yb FA is up to 30 W of CW power in a single spatial mode
and a single frequency mode. The Yb FA output is coupled to a high-finesse cavity (HFC) using a
mode-matching lens (MML). Raman scattering in the HFC generates a Raman Stokes beam at a
wavelength of 1560 nm, which also resonates in the HFC. The HFC and locking electronics are
the same as those in Chapter 9. A glass slide (GS) picks off part of the reflection from the cavity
and sends the signal to the locking circuit through a photodiode (PD). An independent mixing

beam with a wavelength of 785 nm is generated by a separate ECDL, and amplified by a
semiconductor tapered amplifier (TA). The amplified beam is modulated at a frequency of 500 Hz
using and optical chopper (OC). This chopper, in conjunction with a lock-in amplifier, aids in the

detection of the weak sideband in the presence of scatter from the much more powerful pump,
Stokes, and mixing beams. The mixing beam travels through the cavity and mixes with the

coherence from the pump and Stokes beams to generate frequency sidebands through four-wave
mixing. The mixing beam is not resonant with the cavity so the modulation occurs in a single

pass through the system. The chopper-modulated mixing beam and frequency up-shifted sideband
are separated from the transmitted pump and Stokes light (and the frequency down-shifted

sideband) using a low-pass dichroic mirror (DM). The mixing beam and the frequency up-shifted
sideband are then spatially separated using a dispersive grating (DG), and the mixing beam is
blocked using a beam block (BB). The chopper-modulated frequency up-shifted sideband is

detected using a PD and a lock-in amplifier.

large range of wavelengths, and thus it can also be used to modulate broadband signals. We plan

to use our modulator to modulate a frequency comb titanium-sapphire laser in the CW regime.

(Titanium-sapphire lasers have shown promise in pulsed modulation experiments [95, 96, 97, 81].)
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A titanium-sapphire frequency comb is a broadband coherent light source, typically with several

hundred thousand individual spectral components covering a wavelength range of 700 nm to 900

nm. (See the Nobel lectures by Hall [98] and by Hänsch [99], and the article by Hall and colleagues

[100] for more information on titanium-sapphire lasers.)

With its broad, coherent spectrum of narrow linewidth lasers, a titanium-sapphire frequency

comb is similar to the broadband spectra we describe in Chapter 8. However, rather than viewing

titanium-sapphire frequency combs as a competing technology, we believe that molecular modu-

lation could serve to enhance the capabilities of frequency combs. Currently, the bandwidths (and

tuning ranges) of titanium-sapphire frequency combs are limited to roughly 650 nm to 1100 nm

due to the gain bandwidth of the titanium ions. We propose increasing this bandwidth using our

molecular modulator. If the broadband output of a frequency comb passes through a molecular

modulator, each spectral component produces frequency up-shifted and down-shifted sidebands.

This greatly extends the spectral coverage of the comb as illustrated in Figure 11.7.

A broadened titanium-sapphire spectrum would be useful for all of the applications mentioned

in the introduction of this thesis. Broadening the already broad spectrum could yield millions

of CW spectral components, each with a narrow frequency linewidth. This increases the utility

of the spectrum as a spectroscopy tool, as it makes accessible atomic and molecular transitions

spanning a wide range of energies. Because pulse duration and spectral bandwidth are inversely

related, a broader spectrum allows for the generation of shorter ultrashort pulses. Furthermore,

as illustrated in Figure 11.8, with appropriate phase and amplitude control, the spectrum could

be used to synthesize arbitrary optical waveforms with unprecedented resolution [19]. With more

spectral components, there are more degrees of freedom. Thus, a wider range of waveforms can

be generated with a higher resolution. The potential for creating such a powerful tool motivates us

to continue our work with CW molecular modulation.
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Figure 11.7 Frequency Comb Modulation This figure illustrates the effect of our molecular
modulator on a titanium-sapphire frequency comb. The top plot shows a typical output spectrum

from a frequency comb. This would be the input to our modulator. (There are too many
closely-spaced spectral components to show them individually here. We instead use a single
curve to represent the envelope that contains the hundreds of thousands of individual spectral

components.) In the second highest plot, we show the output of our modulator, assuming that our
modulator adds a single Stokes and anti-Stokes sideband to each spectral component with 60%

conversion efficiency. The modulation frequency is taken to be 89.6 THz, which is from
scattering off of the |v = 0, J = 0〉 to |v = 1, J = 0〉 vibrational transition in molecular

deuterium. The third and fourth highest plots include second- and third-order sidebands, again
assuming a conversion efficiency of 60%.

Figure 11.8 Arbitrary Optical Waveform Generation This figure illustrates the potential of a
broadband spectrum for arbitrary optical waveform generation. With its broadband capabilities, a
molecular modulator would be able to modulate the already broad output of a titanium-sapphire
laser. The resulting spectrum could contain a few million CW Fourier components that span the

entire optical region of the spectrum. With appropriate phase and amplitude control, such a broad,
coherent spectrum could be used to Fourier synthesize arbitrary optical waveforms with

sub-femtosecond resolution.
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Appendix A: Effective Hamiltonian of the Raman System

Consider the interaction of a molecular system (a dilute gas of molecules) and Raman side-

bands of complex amplitudes Eq and angular frequencies ωq. Let |a〉 and |b〉 be the ground and

excited Raman states, respectively, and let |i〉 be the upper electronic electronic-ro-vibrational

states. For simplicity, we will assume that the transitions have arbitrarily small linewidths. The

Raman sideband frequencies are harmonically spaced, so

ωq = ω0 + qωm (A.1)

with

ωm ≡ ωb − ωa −∆ω, (A.2)

where ∆ω is the two-photon detuning, which is assumed to be small compared to the Raman

frequency: ωRaman ≡ ωb − ωa � ∆ω.

The Schrödinger equation for the molecular wavefunction |ψ〉 is

j}
d |ψ〉
dt

= Ĥ |ψ〉 . (A.3)

Write the Hamiltonian for the molecule-sideband interaction as the sum of an unperturbed

Hamiltonian and an interaction Hamiltonian as follows:

Ĥ ≡ Ĥ0 + ĤI . (A.4)

Assume that the only relevant interaction between the electric field and the molecule is the

dipole interaction. Ignoring insignificant interactions between upper ro-vibrational states, this

dipole approximation yields unperturbed and interaction Hamiltonians defined as follows:

Ĥ0 ≡ }ωa |a〉 〈a|+ }ωb |b〉 〈b|+
∑
i

}ωi |i〉 〈i| (A.5)

and

ĤI ≡ −E (t) P̂

= −E (t)
∑
i

µai |a〉 〈i| − E (t)
∑
i

µbi |b〉 〈i|

− E∗ (t)
∑
i

µ∗ai |i〉 〈a| − E∗ (t)
∑
i

µ∗bi |i〉 〈b| , (A.6)



140

where E (t) is the electric field, P̂ is the dipole moment operator, and µnm is the matrix element

between states |n〉 and |m〉. ∗denotes a complex conjugate.

Expand the wavefunction in the interaction picture, expressing the time dependence as the

product of the Schrödinger-picture time dependence and a time-dependent constant. Using the fact

that, for eigenkets |n〉 of a Hamiltonian Ĥ with eigenvalues En = }ωn,

e−j
Ĥ
} t |n〉 = e−j

En
} t |n〉

= e−j
}ωn
} t |n〉

= e−jωnt |n〉 , (A.7)

the wavefunction in the interaction picture is given by

|ψ (t)〉 = ca (t) e−jωat |a〉+ cb (t) e−jωbt |b〉+
∑
i

ci (t) e
−jωit |i〉 , (A.8)

where cn (t) is the time-dependent probability amplitude of state |n〉.

Assume that the probability amplitudes vary slowly in comparison to the inverse of the single-

photon detuning δω from |i〉, the upper electronic ro-vibrational states.

Now plug |ψ (t)〉 (Equation A.8) into the above Schrödinger equation (Equation A.3). The

left-hand side yields

j}
d |ψ〉
dt

= j}
d

dt

[
ca (t) e−jωat |a〉+ cb (t) e−jωbt |b〉+

∑
i

ci (t) e
−jωit |i〉

]
. (A.9)

Differentiation using the product rule yields

j}
d |ψ〉
dt

= j}

{[
dca
dt
e−jωat + ca (t)

(
−jωae−jωat

)]
|a〉+

[
dcb
dt
e−jωbt + cb (t)

(
−jωbe−jωbt

)]
|b〉

+
∑
i

[
dci
dt
e−jωit + ci (t)

(
−jωie−jωit

)]
|i〉

}
. (A.10)

Now examine the right-hand side of the above Schrödinger equation (Equation A.3), using the

composite Hamiltonian (Equation A.4).

Ĥ |ψ〉 =
(
Ĥ0 + ĤI

)
|ψ〉 = Ĥ0 |ψ〉+ ĤI |ψ〉 (A.11)
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Plug in Ĥ0, ĤI , and |ψ〉 (Equations A.5, A.6, and A.8); the terms of the above (Equation A.11)

become

Ĥ0 |ψ〉 =

[
}ωa |a〉 〈a|+ }ωb |b〉 〈b|+

∑
i

}ωi |i〉 〈i|

]

×

[
ca (t) e−jωat |a〉+ cb (t) e−jωbt |b〉+

∑
i

ci (t) e
−jωit |i〉

]
(A.12)

and

ĤI |ψ〉 =

[
− E (t)

∑
i

µai |a〉 〈i| − E (t)
∑
i

µbi |b〉 〈i|

− E∗ (t)
∑
i

µ∗ai |i〉 〈a| − E∗ (t)
∑
i

µ∗bi |i〉 〈b|

]

×

[
ca (t) e−jωat |a〉+ cb (t) e−jωbt |b〉+

∑
i

ci (t) e
−jωit |i〉

]
.

(A.13)

Using the orthonormality of states, 〈n|m〉 = δnm, these reduce to

Ĥ0 |ψ〉 =

[
}ωaca (t) e−jωat |a〉+ }ωbcb (t) e−jωbt |b〉+

∑
i

}ωici (t) e−jωit |i〉

]
(A.14)

and

ĤI |ψ〉 =

[
−E (t)

∑
i

µaici (t) e
−jωit |a〉 − E (t)

∑
i

µbici (t) e
−jωit |b〉

× −E∗ (t)
∑
i

µ∗aica (t) e−jωat |i〉 − E∗ (t)
∑
i

µ∗bicb (t) e−jωbt |i〉

]
.

(A.15)
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Summing these expressions and gathering like kets, the right-hand side of Schrödinger equation

(Equation A.3) becomes

Ĥ |ψ〉 = Ĥ0 |ψ〉+ ĤI |ψ〉

=

[
}ωaca (t) e−jωat − E (t)

∑
i

µaici (t) e
−jωit

]
|a〉

+

[
}ωbcb (t) e−jωbt − E (t)

∑
i

µbici (t) e
−jωit

]
|b〉

+

[∑
i

}ωici (t) e−jωit − E∗ (t)
∑
i

µ∗aica (t) e−jωat

−E∗ (t)
∑
i

µ∗bicb (t) e−jωbt

]
|i〉 . (A.16)

By orthogonality of the state kets, the coefficients of each ket on the left side of the Schrödinger

equation must equal the corresponding coefficients on the right side. Equate the coefficients of |a〉,

|b〉, and |i〉 from the left-hand side (Equation A.10) with those from the right-hand side (Equation

A.16) in order to find three coupled equations.

|a〉 coefficient:

j}
[
dca
dt
e−jωat + ca (t)

(
−jωae−jωat

)]
= }ωaca (t) e−jωat − E (t)

∑
i

µaici (t) e
−jωit

(A.17)

Cancel the common ca (t) term.

j}
dca
dt
e−jωat = −E (t)

∑
i

µaici (t) e
−jωit (A.18)

Solve for dca
dt

using 1
j

= −j.

dca
dt

=
j

}
E (t)

∑
i

µaici (t) e
j(ωa−ωi)t (A.19)

|b〉 coefficient:

j}
[
dcb
dt
e−jωbt + cb (t)

(
−jωbe−jωbt

)]
= }ωbcb (t) e−jωbt − E (t)

∑
i

µbici (t) e
−jωit

(A.20)
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Cancel the common cb (t) term.

j}
dcb
dt
e−jωbt = −E (t)

∑
i

µbici (t) e
−jωit (A.21)

Solve for dcb
dt

using 1
j

= −j.

dcb
dt

=
j

}
E (t)

∑
i

µbici (t) e
j(ωb−ωi)t (A.22)

(Any one) |i〉 coefficient:

j}
[
dci
dt
e−jωit + ci (t)

(
−jωie−jωit

)]
= }ωici (t) e−jωit − E∗ (t)µ∗aica (t) e−jωat − E∗ (t)µ∗bicb (t) e−jωbt

(A.23)

Cancellation of the common ci (t) term yields

j}
dci
dt
e−jωit = −E∗ (t)µ∗aica (t) e−jωat − E∗ (t)µ∗bicb (t) e−jωbt. (A.24)

Solve for dci
dt

using 1
j

= −j.

dci
dt

=
j

}
E∗ (t)

[
µ∗aica (t) ej(ωi−ωa)t + µ∗bicb (t) ej(ωi−ωb)t

]
(A.25)

Now use the fact that the total (physical and therefore real) electric field, E (t), is the sum of

the Raman sidebands:

E (t) =
1

2

∑
q

Eqe
j(ωqt−kqz) +

1

2

∑
q

E∗q e
−j(ωqt−kqz), (A.26)

where kq ≡ ωq
c

from the free space dispersion relation, which is valid because we assume a dilute

gas of molecules.

Substitute the expression for E (t) (Equation A.26) into the equation for dca
dt

(Equation A.19).

dca
dt

=
j

}

[
1

2

∑
q

Eqe
j(ωqt−kqz) +

1

2

∑
q

E∗q e
−j(ωqt−kqz)

]∑
i

µaici (t) e
j(ωa−ωi)t

=
j

2}
∑
q

∑
i

[
Eqµaie

j(ωq+ωa−ωi)t−jkqz + E∗qµaie
j(−ωq+ωa−ωi)t+jkqz

]
ci (t)

(A.27)
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An analogous substitution of the same expression for E (t) (Equation A.26) into the equation

for dcb
dt

(Equation A.22) yields

dcb
dt

=
j

}

[
1

2

∑
q

Eqe
j(ωqt−kqz) +

1

2

∑
q

E∗q e
−j(ωqt−kqz)

]∑
i

µbici (t) e
j(ωb−ωi)t

=
j

2}
∑
q

∑
i

[
Eqµbie

j(ωq+ωb−ωi)t−jkqz + E∗qµbie
j(−ωq+ωb−ωi)t+jkqz

]
ci (t)

. (A.28)

Substitute the equation for E (t) (Equation A.26) in the equation for dci
dt

(Equation A.25).

dci
dt

=
j

}

[
1

2

∑
q

Eqe
j(ωqt−kqz) +

1

2

∑
q

E∗q e
−j(ωqt−kqz)

]∗

×

[
µ∗aica (t) ej(ωi−ωa)t + µ∗bicb (t) ej(ωi−ωb)t

]

=
j

2}
∑
q

[
Eqµ

∗
aica (t) ej(ωq+ωi−ωa)t−jkqz + E∗qµ

∗
aica (t) ej(−ωq+ωi−ωa)t+jkqz

+Eqµ
∗
bicb (t) ej(ωq+ωi−ωb)t−jkqz + E∗qµ

∗
bicb (t) ej(−ωq+ωi−ωb)t+jkqz

]
(A.29)

Now assume that the upper electronic ro-vibrational states are outside of the range of single-

photon resonances. This implies that the variation in the exponentials in the previous equation is

significantly faster than the variation of the Eq envelopes. Thus, ci (t) can be found by integrating

the derivative with respect to time, treating the slowly-varying ca (t) ≡ ca, cb (t) ≡ cb, and Eq as

constants.

Perform a formal integration on dci
dt

(Equation A.29), and use
∫
eαt+βzdt = eαt+βz

α
, to find

ci (t) =
j

2}
∑
q

[
Eqµ

∗
aica

j (ωq + ωi − ωa)
ej(ωq+ωi−ωa)t−jkqz +

E∗qµ
∗
aica

j (−ωq + ωi − ωa)
ej(−ωq+ωi−ωa)t+jkqz

+
Eqµ

∗
bicb

j (ωq + ωi − ωb)
ej(ωq+ωi−ωb)t−jkqz +

E∗qµ
∗
bicb

j (−ωq + ωi − ωb)
ej(−ωq+ωi−ωb)t+jkqz

]
.

(A.30)
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Cancel the factor of j.

=
1

2}
∑
q

[
Eqµ

∗
aica

(ωq + ωi − ωa)
ej(ωq+ωi−ωa)t−jkqz +

E∗qµ
∗
aica

(−ωq + ωi − ωa)
ej(−ωq+ωi−ωa)t+jkqz

+
Eqµ

∗
bicb

(ωq + ωi − ωb)
ej(ωq+ωi−ωb)t−jkqz +

E∗qµ
∗
bicb

(−ωq + ωi − ωb)
ej(−ωq+ωi−ωb)t+jkqz

]
(A.31)

Substitute this expression for ci (t) (Equation A.31) into the expression for dca
dt

(Equation A.27).

dca
dt

=
j

2}
∑
q

∑
i

[
Eqµaie

j(ωq+ωa−ωi)t−jkqz + E∗qµaie
j(−ωq+ωa−ωi)t+jkqz

]
× 1

2}
∑
q

[
Eqµ

∗
aica

ωq + ωi − ωa
ej(ωq+ωi−ωa)t−jkqz +

E∗qµ
∗
aica

−ωq + ωi − ωa
ej(−ωq+ωi−ωa)t+jkqz

+
Eqµ

∗
bicb

ωq + ωi − ωb
ej(ωq+ωi−ωb)t−jkqz +

E∗qµ
∗
bicb

−ωq + ωi − ωb
ej(−ωq+ωi−ωb)t+jkqz

]
(A.32)
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Distribute. (In the third sum of the equation above, replace the dummy index of q with y to

avoid confusion.)

dca
dt

=
∑
i

(
j

2}
∑
q

[
Eqµaie

j(ωq+ωa−ωi)t−jkqz
])( 1

2}
∑
y

[
Eyµ

∗
aica

ωy + ωi − ωa
ej(ωy+ωi−ωa)t−jkyz

])

+
∑
i

(
j

2}
∑
q

[
Eqµaie

j(ωq+ωa−ωi)t−jkqz
])( 1

2}
∑
y

[
E∗yµ

∗
aica

−ωy + ωi − ωa
ej(−ωy+ωi−ωa)t+jkyz

])

+
∑
i

(
j

2}
∑
q

[
Eqµaie

j(ωq+ωa−ωi)t−jkqz
])( 1

2}
∑
y

[
Eyµ

∗
bicb

ωy + ωi − ωb
ej(ωy+ωi−ωb)t−jkyz

])

+
∑
i

(
j

2}
∑
q

[
Eqµaie

j(ωq+ωa−ωi)t−jkqz
])( 1

2}
∑
y

[
E∗yµ

∗
bicb

−ωy + ωi − ωb
ej(−ωy+ωi−ωb)t+jkyz

])

+
∑
i

(
j

2}
∑
q

[
E∗qµaie

j(−ωq+ωa−ωi)t+jkqz
])( 1

2}
∑
y

[
Eyµ

∗
aica

ωy + ωi − ωa
ej(ωy+ωi−ωa)t−jkyz

])

+
∑
i

(
j

2}
∑
q

[
E∗qµaie

j(−ωq+ωa−ωi)t+jkqz
])( 1

2}
∑
y

[
E∗yµ

∗
aica

−ωy + ωi − ωa
ej(−ωy+ωi−ωa)t+jkyz

])

+
∑
i

(
j

2}
∑
q

[
E∗qµaie

j(−ωq+ωa−ωi)t+jkqz
])( 1

2}
∑
y

[
Eyµ

∗
bicb

ωy + ωi − ωb
ej(ωy+ωi−ωb)t−jkyz

])

+
∑
i

(
j

2}
∑
q

[
E∗qµaie

j(−ωq+ωa−ωi)t+jkqz
])( 1

2}
∑
y

[
E∗yµ

∗
bicb

−ωy + ωi − ωb
ej(−ωy+ωi−ωb)t+jkyz

])
(A.33)
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Distribute in each term, pulling constant terms out of the sums.

dca
dt

=
j

4}2

∑
i

|µai|2
(∑

q

[
Eqe

jωqt−jkqz
])(∑

y

[
Ey

ωy + ωi − ωa
ejωyt−jkyz

])
ca

+
j

4}2

∑
i

|µai|2
(∑

q

[
Eqe

jωqt−jkqz
])(∑

y

[
E∗y

−ωy + ωi − ωa
e−jωyt+jkyz

])
ca

+
j

4}2

∑
i

µaiµ
∗
bi

(∑
q

[
Eqe

jωqt−jkqz
])(∑

y

[
Ey

ωy + ωi − ωb
ejωyt−jkyz

])
cbe

j(ωa−ωb)t

+
j

4}2

∑
i

µaiµ
∗
bi

(∑
q

[
Eqe

jωqt−jkqz
])(∑

y

[
E∗y

−ωy + ωi − ωb
e−jωyt+jkyz

])
cbe

j(ωa−ωb)t

+
j

4}2

∑
i

|µai|2
(∑

q

[
E∗q e

−jωqt+jkqz
])(∑

y

[
Ey

ωy + ωi − ωa
ejωyt−jkyz

])
ca

+
j

4}2

∑
i

|µai|2
(∑

q

[
E∗q e

−jωqt+jkqz
])(∑

y

[
E∗y

−ωy + ωi − ωa
e−jωyt+jkyz

])
ca

+
j

4}2

∑
i

µaiµ
∗
bi

(∑
q

[
E∗q e

−jωqt+jkqz
])(∑

y

[
Ey

ωy + ωi − ωb
ejωyt−jkyz

])
cbe

j(ωa−ωb)t

+
j

4}2

∑
i

µaiµ
∗
bi

(∑
q

[
E∗q e

−jωqt+jkqz
])(∑

y

[
E∗y

−ωy + ωi − ωb
e−jωyt+jkyz

])
cbe

j(ωa−ωb)t

(A.34)

Now assume that the two-photon transition is near resonance, and use the rotating wave ap-

proximation: neglect all terms that rapidly oscillate. Examine each individual line of the above

expression for dca
dt

(Equation A.34).

In the first line, the time dependence goes as

∑
q

[
ejωqt

](∑
y

[
ejωyt

])
. (A.35)

Note that the terms in this product of sums have the form

ejωqt
(
ejωyt

)
= ej(ωq+ωy)t. (A.36)
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Use the definition of ωq (Equation A.1).

= ej{[ω0+qωm]+[ω0+yωm]}t

= ej[2ω0+(q+y)ωm]t. (A.37)

ω0 � ωm, so for any values of q and y, the first term dominates. Thus, each term oscillates at least

as fast as ej2ω0t and can be neglected under the rotating wave approximation. Since all terms in the

product of sums are negligible, the first line of the expression for dca
dt

(Equation A.34) contributes

nothing.

In the second line of the expression for dca
dt

(Equation A.34), the time dependence of each term

goes as

ejωqt
(
e−jωyt

)
= ej(ωq−ωy)t. (A.38)

The definition of ωq (Equation A.1) yields

= ej{[ω0+qωm]−[ω0+yωm]}t

= ej[(q−y)ωm]t. (A.39)

For q 6= y, these terms oscillate at least as fast as ejωmt and can be neglected. Only the q = y

terms survive.

Thus, under the rotating wave approximation, setting the dummy variable y = q, the second

line of the expression for dca
dt

(Equation A.34) is reduced to the following:

j

4}2

∑
i

|µai|2
(∑

q

[
Eqe

jωqt−jkqz
])(∑

q

[
E∗q

−ωq + ωi − ωa
e−jωqt+jkqz

])
ca

=
j

4}2

∑
i

|µai|2
∑
q

|Eq|2

−ωq + ωi − ωa
[
ejωqt−jkqz

] [
e−jωqt+jkqz

]
ca

=
j

4}2

∑
i

|µai|2
∑
q

|Eq|2

−ωq + ωi − ωa
ca. (A.40)

In the third line of the expression for dca
dt

(Equation A.34), the time dependence of each term

goes as

ejωqt
(
ejωyt

)
ej(ωa−ωb)t = ej(ωq+ωy+ωa−ωb)t. (A.41)
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Insert the definition of ωq (Equation A.1) and then that of ωm (Equation A.2).

= ej([ω0+qωm]+[ω0+yωm]+ωa−ωb)t

= ej{[ω0+q(ωb−ωa−∆ω)]+[ω0+y(ωb−ωa−∆ω)]+ωa−ωb}t

= ej{2ω0+(q+y−1)(ωb−ωa)−(q+y)∆ω}t (A.42)

Since ω0 � (ωb − ωa) � ∆ω, this oscillates approximately as ej2ω0t and can be neglected.

Thus, the contributions of the third line of the expression for dca
dt

(Equation A.34) vanish.

In the fourth line of the expression for dca
dt

(Equation A.34), the time dependence of each term

goes as

ejωqt
(
e−jωyt

)
ej(ωa−ωb)t = ej(ωq−ωy+ωa−ωb)t. (A.43)

Substitute for ωq (Equation A.1) and ωm (Equation A.2) as above.

= ej([ω0+qωm]−[ω0+yωm]+ωa−ωb)t

= ej{[ω0+q(ωb−ωa−∆ω)]−[ω0+y(ωb−ωa−∆ω)]+ωa−ωb}t

= ej{(q−y−1)(ωb−ωa)−(q−y)∆ω}t (A.44)

Since (ωb − ωa)� ∆ω, the first term dominates. Thus, the time dependence is approximately

ej(q−y−1)(ωb−ωa)t (A.45)

Unless q− y− 1 = 0⇒ y = q− 1, this oscillates at least as fast as ej(ωb−ωa)t and thus vanishes

with the rotating wave approximation.

The fourth line of the expression for dca
dt

(Equation A.34) is then reduced to the following by

setting y = q − 1.

j

4}2

∑
i

µaiµ
∗
bi

(∑
q

[
Eqe

jωqt−jkqz
])(∑

q−1

[
E∗q−1

−ωq−1 + ωi − ωb
e−jωq−1t+jkq−1z

])
cbe

j(ωa−ωb)t

=
j

4}2

∑
i

µaiµ
∗
bi

∑
q

EqE
∗
q−1

−ωq−1 + ωi − ωb
[
ej(ωq−ωq−1+ωa−ωb)t+j(−kq+kq−1)z

]
cb (A.46)

Now rewrite this expression. Examine the denominator.

−ωq−1 + ωi − ωb (A.47)
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First rewrite ωq−1 using the definition of ωq (Equation A.1).

ωq−1 = ω0 + (q − 1)ωm

= (ω0 + qωm)− ωm

= ωq − ωm (A.48)

Plug this into the denominator (Equation A.47).

−ωq−1 + ωi − ωb = − (ωq − ωm) + ωi − ωb

= −ωq + ωm + ωi − ωb (A.49)

Use the definition of ωm (Equation A.2).

= −ωq + (ωb − ωa −∆ω) + ωi − ωb

= −ωq − ωa −∆ω + ωi (A.50)

Now use the fact that (ωb − ωa) � ∆ω and ωi � ∆ω, and the denominator (Equation A.47)

becomes approximately

≈ −ωq − ωa + ωi. (A.51)

Now examine ωq − ωq−1 + ωa − ωb from the exponent of the expression for the fourth line

(Equation A.46).

Using the results from above (Equation A.48),

ωq − ωq−1 + ωa − ωb = ωq − (ωq − ωm) + ωa − ωb

= ωm + ωa − ωb. (A.52)

Use the definition of ωm (Equation A.2).

= (ωb − ωa −∆ω) + ωa − ωb

= −∆ω (A.53)

Another term in the exponent of the fourth line (Equation A.46), −kq + kq−1, can be rewritten

in a similar manner.
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Using the definition

kq ≡ k0 + qkm, (A.54)

rewrite the term as follows:

−kq + kq−1 = − (k0 + qkm) + (k0 + [q − 1] km) = −km. (A.55)

Now plug the above (Equations A.51, A.53, and A.55) into the fourth line of the equation

(Equation A.46).

j

4}2

∑
i

µaiµ
∗
bi

∑
q

EqE
∗
q−1

−ωq−1 + ωi − ωb
[
ej(ωq−ωq−1+ωa−ωb)t+j(−kq+kq−1)z

]
cb

=
j

4}2

∑
i

µaiµ
∗
bi

∑
q

EqE
∗
q−1

−ωq − ωa + ωi

(
e−j∆ωt−jkmz

)
cb (A.56)

Now examine the fifth line of the expression for dca
dt

(Equation A.34). The time dependence of

each term goes as

e−jωqt
(
ejωyt

)
= ej(−ωq+ωy)t. (A.57)

The argument is analogous to that of the second line with the only difference being a sign

switch between ωq and ωy.

The definition of ωq (Equation A.1) yields

ej{−[ω0+qωm]+[ω0+yωm]}t = ej[(−q+y)ωm]t. (A.58)

For q 6= y, these terms oscillate at least as fast as ejωmt and can be neglected. Only q = y terms

survive.

Thus, under the rotating wave approximation, the fifth line of the expression for dca
dt

(Equation

A.34) is reduced to the following by setting y = q.

j

4}2

∑
i

|µai|2
(∑

q

[
Eqe

−jωqt+jkqz
])(∑

q

[
E∗q

ωq + ωi − ωa
ejωqt−jkqz

])
ca

=
j

4}2

∑
i

|µai|2
∑
q

|Eq|2

ωq + ωi − ωa
[
e−jωqt+jkqz

] [
ejωqt−jkqz

]
ca

=
j

4}2

∑
i

|µai|2
∑
q

|Eq|2

ωq + ωi − ωa
ca (A.59)
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Examine the sixth line of the expression for dca
dt

(Equation A.34). This, up to a negative sign,

is the same as the first line. The time dependence of each term goes as

e−jωqt
(
e−jωyt

)
= e−j(ωq+ωy)t. (A.60)

Use the definition ωq (Equation A.1).

= e−j{[ω0+qωm]+[ω0+yωm]}t

= e−j[2ω0+(q+y)ωm]t (A.61)

ω0 � ωm, so for any values of q and y, the first term dominates. Thus, each term oscillates

at least as fast as ej2ω0t and can be neglected under the rotating wave approximation. Since all

terms in the product of sums are negligible, the sixth line of the expression for dca
dt

(Equation A.34)

contributes nothing.

Examine the seventh line of the expression for dca
dt

(Equation A.34). This is similar to the fourth

line with a change of signs. The time dependence of each term goes as

e−jωqt
(
ejωyt

)
ej(ωa−ωb)t = ej(−ωq+ωy+ωa−ωb)t. (A.62)

Substituting for ωq and ωm (Equations A.1 and A.2) as above, this yields

= ej(−[ω0+qωm]+[ω0+yωm]+ωa−ωb)t

= ej{−[ω0+q(ωb−ωa−∆ω)]+[ω0+y(ωb−ωa−∆ω)]+ωa−ωb}t

= ej{(−q+y−1)(ωb−ωa)+(q−y)∆ω}t. (A.63)

Since (ωb − ωa) � ∆ω, the first term dominates, so the time dependence is approximately

ej(−q+y−1)(ωb−ωa)t. Unless −q+ y− 1 = 0⇒ q = y− 1, this oscillates at least as fast as ej(ωb−ωa)t

and thus vanishes.

The seventh line of the expression for dca
dt

(Equation A.34) is then reduced to the following by

setting q = y − 1.

j

4}2

∑
i

µaiµ
∗
bi

(∑
y−1

[
E∗y−1e

−jωy−1t+jky−1z
])(∑

y

[
Ey

ωy + ωi − ωb
ejωyt−jkyz

])
cbe

j(ωa−ωb)t

=
j

4}2

∑
i

µaiµ
∗
bi

∑
y

E∗y−1Ey

ωy + ωi − ωb
[
ej(−ωy−1+ωy+ωa−ωb)t+j(ky−1−ky)z

]
cb (A.64)
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Rewrite the exponent of this expression.

Use the definition of ωq (Equation A.1).

−ωy−1 + ωy + ωa − ωb = − (ω0 + [y − 1]ωm) + ωy + ωa − ωb

= − [(ω0 + yωm)− ωm] + ωy + ωa − ωb

= − [ωy − ωm] + ωy + ωa − ωb

= ωm + ωa − ωb (A.65)

Use the definition of ωm (Equation A.2).

= (ωb − ωa −∆ω) + ωa − ωb

= −∆ω (A.66)

Another term in the exponent, ky−1 − ky, can be rewritten in a similar manner.

Use the definition of kq (Equation A.54).

ky−1 − ky = (k0 + [y − 1] km)− (k0 + ykm)

= −km (A.67)

Now plug in the above equations (Equations A.66 and A.67) in the expression for the seventh

line above (A.64). The seventh line of the expression for dca
dt

(Equation A.34) becomes

j

4}2

∑
i

µaiµ
∗
bi

∑
y

E∗y−1Ey

ωy + ωi − ωb
[
ej(−ωy−1+ωy+ωa−ωb)t+j(ky−1−ky)z

]
cb

=
j

4}2

∑
i

µaiµ
∗
bi

∑
y

E∗y−1Ey

ωy + ωi − ωb
(
e−j∆ωt−jkmz

)
cb. (A.68)

Now examine the eighth line of the expression for dca
dt

(Equation A.34). It is similar to the third

line. The time dependence goes as

e−jωqt
(
e−jωyt

)
ej(ωa−ωb)t = ej(−ωq−ωy+ωa−ωb)t. (A.69)
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Insert the definitions of ωq and ωm (Equations A.1 and A.2).

= ej(−[ω0+qωm]−[ω0+yωm]+ωa−ωb)t

= ej{−[ω0+q(ωb−ωa−∆ω)]−[ω0+y(ωb−ωa−∆ω)]+ωa−ωb}t

= ej{−2ω0−(q+y+1)(ωb−ωa)+(q+y)∆ω}t (A.70)

Since ω0 � (ωb − ωa) � ∆ω, this oscillates approximately as e−j2ω0t and can be neglected.

Thus, the contributions of the eighth line of the expression for dca
dt

(Equation A.34) vanish.

Therefore, under the rotating wave approximation, the only nonvanishing contributions to the

expression for dca
dt

(Equation A.34) are from the second, fourth, fifth, and seventh lines (Equations

A.40, A.56, A.59, and A.68). Summing the contributions from these lines yields the following

approximation of the expression for dca
dt

(Equation A.34). (Change the dummy variable y to q in

Equation A.68 to match the other equations).

dca
dt

=
j

4}2

∑
i

|µai|2
∑
q

|Eq|2

−ωq + ωi − ωa
ca

+
j

4}2

∑
i

µaiµ
∗
bi

∑
q

EqE
∗
q−1

−ωq − ωa + ωi

(
e−j∆ωt−jkmz

)
cb

+
j

4}2

∑
i

|µai|2
∑
q

|Eq|2

ωq + ωi − ωa
ca

+
j

4}2

∑
i

µaiµ
∗
bi

∑
q

E∗q−1Eq

ωq + ωi − ωb
(
e−j∆ωt−jkmz

)
cb (A.71)

Now for the equation for dcb
dt

. This is very similar to the process for dca
dt

.
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Plug the expression for ci (t) (Equation A.31) into the expression for dcb
dt

(Equation A.28).

dcb
dt

=
j

2}
∑
q

∑
i

[
Eqµbie

j(ωq+ωb−ωi)t−jkqz + E∗qµbie
j(−ωq+ωb−ωi)t+jkqz

]
× 1

2}
∑
q

[
Eqµ

∗
aica

(ωq + ωi − ωa)
ej(ωq+ωi−ωa)t−jkqz

+
E∗qµ

∗
aica

(−ωq + ωi − ωa)
ej(−ωq+ωi−ωa)t+jkqz

+
Eqµ

∗
bicb

(ωq + ωi − ωb)
ej(ωq+ωi−ωb)t−jkqz

+
E∗qµ

∗
bicb

(−ωq + ωi − ωb)
ej(−ωq+ωi−ωb)t+jkqz

]
(A.72)

Note that this is very similar to the expression for dca
dt

(Equation A.32). The only difference

between the equations (Equations A.32 and A.72) is that a is replaced by b in the first term. Thus,

since the second term is symmetric under the interchange of a and b, we can use the results for dca
dt

(Equation A.34) interchanging a and b.
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dcb
dt

=
j

4}2

∑
i

|µbi|2
(∑

q

[
Eqe

jωqt−jkqz
])(∑

y

[
Ey

ωy + ωi − ωb
ejωyt−jkyz

])
cb

+
j

4}2

∑
i

|µbi|2
(∑

q

[
Eqe

jωqt−jkqz
])(∑

y

[
E∗y

−ωy + ωi − ωb
e−jωyt+jkyz

])
cb

+
j

4}2

∑
i

µbiµ
∗
ai

(∑
q

[
Eqe

jωqt−jkqz
])(∑

y

[
Ey

ωy + ωi − ωa
ejωyt−jkyz

])
cae

j(ωb−ωa)t

+
j

4}2

∑
i

µbiµ
∗
ai

(∑
q

[
Eqe

jωqt−jkqz
])(∑

y

[
E∗y

−ωy + ωi − ωa
e−jωyt+jkyz

])
cae

j(ωb−ωa)t

+
j

4}2

∑
i

|µbi|2
(∑

q

[
E∗q e

−jωqt+jkqz
])(∑

y

[
Ey

ωy + ωi − ωb
ejωyt−jkyz

])
cb

+
j

4}2

∑
i

|µbi|2
(∑

q

[
E∗q e

−jωqt+jkqz
])(∑

y

[
E∗y

−ωy + ωi − ωb
e−jωyt+jkyz

])
cb

+
j

4}2

∑
i

µbiµ
∗
ai

(∑
q

[
E∗q e

−jωqt+jkqz
])(∑

y

[
Ey

ωy + ωi − ωa
ejωyt−jkyz

])
cae

j(ωb−ωa)t

+
j

4}2

∑
i

µbiµ
∗
ai

(∑
q

[
E∗q e

−jωqt+jkqz
])(∑

y

[
E∗y

−ωy + ωi − ωa
e−jωyt+jkyz

])
cae

j(ωb−ωa)t

(A.73)

As above, use the rotating wave approximation, and neglect all terms that rapidly oscillate.

Examine each line of the expression for dcb
dt

(Equation A.73).

In the first line, the time dependence of each term goes as

ejωqt
(
ejωyt

)
= ej(ωq+ωy)t. (A.74)

Use the definition of ωq (Equation A.1).

= ej{[ω0+qωm]+[ω0+yωm]}t

= ej[2ω0+(q+y)ωm]t (A.75)
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ω0 � ωm, so for any values of q and y, the first term dominates. Thus, each term oscillates

at least as fast as ej2ω0t and can be neglected under the rotating wave approximation. Since all

terms in the product of sums are negligible, the first line of the expression for dcb
dt

(Equation A.73)

contributes nothing.

In the second line of the expression for dcb
dt

(Equation A.73), the time dependence of each term

goes as

ejωqt
(
e−jωyt

)
= ej(ωq−ωy)t. (A.76)

The definition of ωq (Equation A.1) yields

= ej{[ω0+qωm]−[ω0+yωm]}t

= ej[(q−y)ωm]t. (A.77)

For q 6= y, these terms oscillate at least as fast as ejωmt and can be neglected. Only q = y terms

survive.

Thus, under the rotating wave approximation, by setting q = y, the second line of the expres-

sion for dcb
dt

(Equation A.73) is reduced to the following:

j

4}2

∑
i

|µbi|2
(∑

q

[
Eqe

jωqt−jkqz
])(∑

q

[
E∗q

−ωq + ωi − ωb
e−jωqt+jkqz

])
cb

=
j

4}2

∑
i

|µbi|2
∑
q

|Eq|2

−ωq + ωi − ωb
[
ejωqt−jkqz

] [
e−jωqt+jkqz

]
cb

=
j

4}2

∑
i

|µbi|2
∑
q

|Eq|2

−ωq + ωi − ωb
cb. (A.78)

In the third line of the expression for dcb
dt

(Equation A.73), the time dependence of each term

goes as

ejωqt
(
ejωyt

)
ej(ωb−ωa)t = ej(ωq+ωy+ωb−ωa)t. (A.79)

Insert the definitions of ωq and ωm (Equations A.1 and A.2).

= ej([ω0+qωm]+[ω0+yωm]+ωb−ωa)t

= ej{[ω0+q(ωb−ωa−∆ω)]+[ω0+y(ωb−ωa−∆ω)]+ωb−ωa}t

= ej{2ω0+(q+y+1)(ωb−ωa)−(q+y)∆ω}t (A.80)
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Since ω0 � (ωb − ωa) � ∆ω, this oscillates approximately as ej2ω0t and can be neglected.

Thus, the contributions of the third line of the expression for dcb
dt

(Equation A.73) vanish.

In the fourth line of the expression for dcb
dt

(Equation A.73), the time dependence of each term

goes as

ejωqt
(
e−jωyt

)
ej(ωb−ωa)t = ej(ωq−ωy+ωb−ωa)t. (A.81)

Substituting for ωq and ωm as above (using Equations A.1 and A.2),

= ej([ω0+qωm]−[ω0+yωm]+ωb−ωa)t

= ej{[ω0+q(ωb−ωa−∆ω)]−[ω0+y(ωb−ωa−∆ω)]+ωb−ωa}t

= ej{(q−y+1)(ωb−ωa)−(q−y)∆ω}t. (A.82)

Since (ωb − ωa)� ∆ω, the first term dominates. Thus, the time dependence is approximately

ej(q−y+1)(ωb−ωa)t.

Unless q−y+1 = 0⇒ q = y−1, this oscillates at least as fast as ej(ωb−ωa)t and thus vanishes.

The fourth line of the expression for dcb
dt

(Equation A.73) is then reduced to the following by

setting q = y − 1:

j

4}2

∑
i

[
µbiµ

∗
ai

(∑
y−1

[
Ey−1e

jωy−1t−jky−1z
])

×

(∑
y

[
E∗y

−ωy + ωi − ωa
e−jωyt+jkyz

])]
cae

j(ωb−ωa)t

=
j

4}2

∑
i

µbiµ
∗
ai

∑
q

Ey−1E
∗
y

−ωy + ωi − ωa
[
ej(ωy−1−ωy+ωb−ωa)t+j(−ky−1+ky)z

]
ca. (A.83)

Rewrite the exponent of this expression. Use the definition of ωq (Equation A.1).

ωy−1 − ωy + ωa − ωb = (ω0 + [y − 1]ωm)− ωy + ωb − ωa

= [(ω0 + yωm)− ωm]− ωy + ωb − ωa

= [ωy − ωm]− ωy + ωb − ωa

= −ωm + ωb − ωa (A.84)
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Use the definition of ωm (Equation A.2).

= − (ωb − ωa −∆ω) + ωb − ωa

= ∆ω (A.85)

Another term in the exponent,−ky−1 + ky, can be rewritten in a similar manner.

Use the definition of kq (Equation A.54).

−ky−1 + ky = − (k0 + [y − 1] km) + (k0 + ykm)

= km (A.86)

Now plug the above (Equations A.85 and A.86) into the expression for the fourth line (Equation

A.83). The fourth line of the expression for dcb
dt

(Equation A.73) becomes

j

4}2

∑
i

µbiµ
∗
ai

(∑
q

[
Eqe

jωqt−jkqz
])(∑

y

[
E∗y

−ωy + ωi − ωa
e−jωyt+jkyz

])
cae

j(ωb−ωa)t

=
j

4}2

∑
i

µbiµ
∗
ai

∑
y

Ey−1E
∗
y

−ωy + ωi − ωa
[
ej∆ωt+jkmz

]
ca. (A.87)

Now examine the fifth line of the expression for dcb
dt

(Equation A.73). The argument is anal-

ogous to that of the second line with the only difference being a sign switch between ωq and ωy.

The time dependence of each term goes as

e−jωqt
(
ejωyt

)
= ej(−ωq+ωy)t. (A.88)

The definition of ωq (Equation A.1) yields

= ej{−[ω0+qωm]+[ω0+yωm]}t

= ej[(−q+y)ωm]t. (A.89)

For q 6= y, these terms oscillate at least as fast as ejωmt and can be neglected. Only q = y terms

survive.



160

Thus, under the rotating wave approximation, the second line of the expression for dcb
dt

(Equa-

tion A.73) is reduced to the following by setting y = q:

j

4}2

∑
i

|µbi|2
(∑

q

[
Eqe

−jωqt+jkqz
])(∑

q

[
E∗q

ωq + ωi − ωb
ejωqt−jkqz

])
cb

=
j

4}2

∑
i

|µbi|2
∑
q

|Eq|2

ωq + ωi − ωb
[
e−jωqt+jkqz

] [
ejωqt−jkqz

]
cb

=
j

4}2

∑
i

|µbi|2
∑
q

|Eq|2

ωq + ωi − ωb
cb. (A.90)

Examine the sixth line of the expression for dcb
dt

(Equation A.73). This, up to a negative sign, is

the same as the first line. The time dependence of each term goes as

e−jωqt
(
e−jωyt

)
= e−j(ωq+ωy)t. (A.91)

Use the definition of ωq (Equation A.1).

= e−j{[ω0+qωm]+[ω0+yωm]}t

= e−j[2ω0+(q+y)ωm]t (A.92)

ω0 � ωm, so for any value of q and y, the first term dominates. Thus, each term oscillates

at least as fast as ej2ω0t and can be neglected under the rotating wave approximation. Since all

terms in the product of sums are negligible, the sixth line of the expression for dcb
dt

(Equation A.73)

contributes nothing.

Examine the seventh line of the expression for dcb
dt

(Equation A.73). This is similar to the fourth

line with a change of signs. The time dependence of each term goes as

e−jωqt
(
ejωyt

)
ej(ωb−ωa)t = ej(−ωq+ωy+ωb−ωa)t. (A.93)

Substitute for ωq and ωm as above (using Equations A.1 and A.2).

= ej(−[ω0+qωm]+[ω0+yωm]+ωb−ωa)t

= ej{−[ω0+q(ωb−ωa−∆ω)]+[ω0+y(ωb−ωa−∆ω)]+ωb−ωa}t

= ej{(−q+y+1)(ωb−ωa)+(q−y)∆ω}t (A.94)
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Since (ωb − ωa)� ∆ω, the first term dominates. Thus, the time dependence is approximately

ej(−q+y+1)(ωb−ωa)t.

Unless −q + y + 1 = 0 ⇒ y = q − 1, this oscillates at least as fast as ej(ωb−ωa)t and thus

vanishes.

The seventh line of the expression for dcb
dt

(Equation A.73) is then reduced to the following by

setting y = q − 1:

j

4}2

∑
i

µbiµ
∗
ai

(∑
q

[
E∗q e

−jωqt+jkqz
])(∑

q−1

[
Eq−1

ωq−1 + ωi − ωa
ejωq−1t−jkq−1z

])
cae

j(ωb−ωa)t

=
j

4}2

∑
i

µbiµ
∗
ai

∑
q

E∗qEq−1

ωq−1 + ωi − ωa
[
ej(−ωq+ωq−1+ωb−ωa)t+j(kq−kq−1)z

]
ca. (A.95)

Rewrite this expression. Use the expression above for ωq−1 (Equation A.48) to rewrite the

denominator.

ωq−1 + ωi − ωa = (ωq − ωm) + ωi − ωa (A.96)

Use the definition of ωm (Equation A.2).

= ωq − (ωb − ωa −∆ω) + ωi − ωa

= ωq − ωb + ∆ω + ωi (A.97)

Now use the fact that (ωb − ωa) � ∆ω and ωi � ∆ω, and the denominator of the above

(Equation A.95) becomes approximately

≈ ωq − ωb + ωi. (A.98)

Now examine −ωq + ωq−1 + ωb − ωa from the exponent of the seventh line (Equation A.95).

Use the expression above for ωq−1 (Equation A.48).

−ωq + ωq−1 + ωb − ωa = −ωq + (ωq − ωm) + ωb − ωa

= −ωm + ωb − ωa (A.99)

Use the definition of ωm (Equation A.2).

= − (ωb − ωa −∆ω) + ωb − ωa

= ∆ω (A.100)
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Another term in the exponent, kq−kq−1, can be rewritten in a similar manner. Use the definition

of kq (Equation A.54).

kq − kq−1 = (k0 + qkm)− (k0 + [q − 1] km)

= km (A.101)

Now plug the above (Equations A.98, A.100, and A.101) into the seventh line (Equation A.95).

The seventh line of the expression for dcb
dt

(Equation A.73) becomes

j

4}2

∑
i

µbiµ
∗
ai

∑
q

E∗qEq−1

ωq−1 + ωi − ωa
[
ej(−ωq+ωq−1+ωb−ωa)t+j(kq−kq−1)z

]
ca

=
j

4}2

∑
i

µbiµ
∗
ai

∑
q

E∗qEq−1

ωq − ωb + ωi

[
ej∆ωt+jkmz

]
ca. (A.102)

Now examine the eighth line of the expression for dcb
dt

(Equation A.73). This is similar to the

third line. The time dependence goes as

e−jωqt
(
e−jωyt

)
ej(ωb−ωa)t = ej(−ωq−ωy+ωb−ωa)t. (A.103)

Insert the definitions of ωq and ωm (Equations A.1 and A.2).

= ej(−[ω0+qωm]−[ω0+yωm]+ωb−ωa)t

= ej{−[ω0+q(ωb−ωa−∆ω)]−[ω0+y(ωb−ωa−∆ω)]+ωb−ωa}t

= ej{−2ω0−(q+y−1)(ωb−ωa)+(q+y)∆ω}t (A.104)

Since ω0 � (ωb − ωa) � ∆ω, this oscillates approximately as e−j2ω0t and can be neglected.

Thus, the contributions of the eighth line of the expression for dcb
dt

(Equation A.73) vanish.

Therefore, under the rotating wave approximation, the only nonvanishing contributions to the

expression for dcb
dt

(Equation A.73) are from the second, fourth, fifth, and seventh lines (Equations

A.78, A.87, A.90, and A.102 ). Summing the contributions from these lines yields the following

approximation of the expression for dcb
dt

(Equation A.73). (Change the dummy variable y to q in
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Equation A.87 to match other equations.)

dcb
dt

=
j

4}2

∑
i

|µbi|2
∑
q

|Eq|2

−ωq + ωi − ωb
cb

+
j

4}2

∑
i

µbiµ
∗
ai

∑
q

Eq−1E
∗
q

−ωq + ωi − ωa
(
ej∆ωt+jkmz

)
ca

+
j

4}2

∑
i

|µbi|2
∑
q

|Eq|2

ωq + ωi − ωb
cb

+
j

4}2

∑
i

µbiµ
∗
ai

∑
q

E∗qEq−1

ωq − ωb + ωi

(
ej∆ωt+jkmz

)
ca (A.105)

The equations for dca
dt

and dcb
dt

can be simplified by defining coupling and dispersion constants.

First rewrite the equation for dca
dt

(Equation A.71).

dca
dt

=
j

4}2

∑
i

|µai|2
∑
q

|Eq|2

−ωq + ωi − ωa
ca

+
j

4}2

∑
i

µaiµ
∗
bi

∑
q

EqE
∗
q−1

−ωq − ωa + ωi

(
e−j∆ωt−jkmz

)
cb

+
j

4}2

∑
i

|µai|2
∑
q

|Eq|2

ωq + ωi − ωa
ca

+
j

4}2

∑
i

µaiµ
∗
bi

∑
q

E∗q−1Eq

ωq + ωi − ωb
(
e−j∆ωt−jkmz

)
cb (A.106)

Group like terms and rearrange.

dca
dt

=
j

2

∑
q

{
1

2}2

∑
i

|µai|2
[

1

(ωi − ωa)− ωq
+

1

(ωi − ωa) + ωq

]
|Eq|2 ca

+
1

2}2

∑
i

µaiµ
∗
bi

[
1

(ωi − ωa)− ωq
+

1

(ωi − ωb) + ωq

]
EqE

∗
q−1

(
e−j∆ωt−jkmz

)
cb

}
(A.107)
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Now rewrite the equation for dcb
dt

(Equation A.105).

dcb
dt

=
j

4}2

∑
i

|µbi|2
∑
q

|Eq|2

−ωq + ωi − ωb
cb

+
j

4}2

∑
i

µbiµ
∗
ai

∑
q

Eq−1E
∗
q

−ωq + ωi − ωa
(
ej∆ωt+jkmz

)
ca

+
j

4}2

∑
i

|µbi|2
∑
q

|Eq|2

ωq + ωi − ωb
cb

+
j

4}2

∑
i

µbiµ
∗
ai

∑
q

E∗qEq−1

ωq − ωb + ωi

(
ej∆ωt+jkmz

)
ca (A.108)

Group like terms and rearrange.

dcb
dt

=
j

2

∑
q

{
1

2}2

∑
i

|µbi|2
[

1

(ωi − ωb)− ωq
+

1

(ωi − ωb) + ωq

]
|Eq|2 cb

+
1

2}2

∑
i

µ∗aiµbi

[
1

(ωi − ωa)− ωq
+

1

(ωi − ωb) + ωq

]
E∗qEq−1

(
ej∆ωt+jkmz

)
ca

}
(A.109)

Now define coupling and dispersion constants as in the main text.

1

2}2

∑
i

|µai|2
[

1

(ωi − ωa)− ωq
+

1

(ωi − ωa) + ωq

]
≡ aq (A.110)

1

2}2

∑
i

µaiµ
∗
bi

[
1

(ωi − ωa)− ωq
+

1

(ωi − ωb) + ωq

]
≡ bq (A.111)

1

2}2

∑
i

|µbi|2
[

1

(ωi − ωb)− ωq
+

1

(ωi − ωb) + ωq

]
≡ dq (A.112)

With these definitions, simplify the expressions above (Equations A.107 and A.109).

dca
dt

=
j

2

∑
q

[
aq |Eq|2 ca + bqEqE

∗
q−1

(
e−j∆ωt−jkmz

)
cb
]

(A.113)

dcb
dt

=
j

2

∑
q

[
dq |Eq|2 cb + b∗qE

∗
qEq−1

(
ej∆ωt+jkmz

)
ca
]

(A.114)

Now make the following phase transformation to the constants to simplify the equations.

ca ≡ c̃a (A.115)

cb ≡ c̃be
j∆ωt+jkmz (A.116)
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Plug these phase transformed constants into the equation for dca
dt

(Equation A.113).

dc̃a
dt

=
j

2

∑
q

{
aq |Eq|2 [c̃a] + bqEqE

∗
q−1

(
e−j∆ωt−jkmz

) [
c̃be

j∆ωt+jkmz
]}

(A.117)

dc̃a
dt

=
j

2

∑
q

[
aq |Eq|2 c̃a + bqEqE

∗
q−1c̃b

]
(A.118)

The phase transformed version of the equation for dcb
dt

(Equation A.114) is then

d
[
c̃be

j∆ωt+jkmz
]

dt
=
j

2

∑
q

{
dq |Eq|2

[
c̃be

j∆ωt+jkmz
]

+ b∗qE
∗
qEq−1

(
ej∆ωt+jkmz

)
[c̃a]
}
. (A.119)

Differentiate the left-hand side of this equation using the product rule.

dc̃b
dt
ej∆ωt+jkmz +

d

dt

[
ej∆ωt+jkmz

]
c̃b

=
j

2

∑
q

[
dq |Eq|2 c̃bej∆ωt+jkmz + b∗qE

∗
qEq−1

(
ej∆ωt+jkmz

)
c̃a
]

dc̃b
dt
ej∆ωt+jkmz + j∆ω

[
ej∆ωt+jkmz

]
c̃b

=
j

2

∑
q

[
dq |Eq|2 c̃bej∆ωt+jkmz + b∗qE

∗
qEq−1

(
ej∆ωt+jkmz

)
c̃a
]

(A.120)

Now multiply both sides by e−j∆ωt−jkmz.

dc̃b
dt

+ j∆ωc̃b =
j

2

∑
q

[
dq |Eq|2 c̃b + b∗qE

∗
qEq−1c̃a

]
Solve for dc̃b

dt
and rearrange.

dc̃b
dt

=
j

2

∑
q

[
dq |Eq|2 c̃b + b∗qE

∗
qEq−1c̃a

]
− j∆ωc̃b

=
j

2

∑
q

[(
dq |Eq|2 − 2∆ω

)
c̃b + b∗qE

∗
qEq−1c̃a

]
(A.121)

Combine these two phase-transformed equations (Equations A.118 and A.121) into a vector

equation.

d

dt

 c̃a

c̃b

 =
j

2

 ∑
q aq |Eq|

2 ∑
q bqEqE

∗
q−1∑

q b
∗
qE
∗
qEq−1

∑
q dq |Eq|

2 − 2∆ω

 c̃a

c̃b

 (A.122)
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Multiply both sides by j}, noting j2 = −1.

j}
d

dt

 c̃a

c̃b

 = −}
2

 ∑
q aq |Eq|

2 ∑
q bqEqE

∗
q−1∑

q b
∗
qE
∗
qEq−1

∑
q dq |Eq|

2 − 2∆ω

 c̃a

c̃b

 (A.123)

Note that this now has the form of the Schrödinger equation (Equation A.3),

j}
d |ψ〉
dt

= Ĥ |ψ〉

with the wavefunction

|ψ〉 =

 c̃a

c̃b

 (A.124)

and an effective Hamiltonian

Ĥ = −}
2

 ∑
q aq |Eq|

2 ∑
q bqEqE

∗
q−1∑

q b
∗
qE
∗
qEq−1

∑
q dq |Eq|

2 − 2∆ω

 . (A.125)

This can be simplified by defining the following variables:∑
q

aq |Eq|2 ≡ A (A.126)∑
q

bqEqE
∗
q−1 ≡ B (A.127)∑

q

b∗qE
∗
qEq−1 = B∗ ≡ C (A.128)∑
q

dq |Eq|2 ≡ D. (A.129)

With these variables, the effective Hamiltonian (Equation A.125) then becomes

Ĥ = −}
2

 A B

C D − 2∆ω

 . (A.130)
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Appendix B: Eigenstates and Eigenvalues of the Hamiltonian

As derived in Appendix A, the effective Hamiltonian of our Raman system is

Ĥ = −}
2

 A B

B∗ D − 2∆ω

 . (B.1)

All variables are defined as in Appendix A (Equations A.126 - A.129), and we have used the fact

that C = B∗.

To find the eigenvaluesEi of this 2×2 matrix, we first calculate the determinant of the following

matrix.

Ĥ − EiI2×2 = −}
2

 A B

B∗ D − 2∆ω

− Ei
 1 0

0 1


=

 −}
2
A− Ei −}

2
B

−}
2
B∗ −}

2
(D − 2∆ω)− Ei


=

 −}
2
A− Ei −}

2
B

−}
2
B∗ −}

2
D + }

2
2∆ω − Ei

 , (B.2)

where I2×2 is the 2× 2 identity matrix.

Calculate the determinant of the matrix and set it equal to zero to get a characteristic equation.∣∣∣Ĥ − EiI2×2

∣∣∣ =

∣∣∣∣∣∣ −
}
2
A− Ei −}

2
B

−}
2
B∗ −}

2
D + }

2
2∆ω − Ei

∣∣∣∣∣∣
=

(
−}

2
A− Ei

)(
−}

2
D +

}
2

2∆ω − Ei
)
− }2

4
|B|2 (B.3)

Expand, group like powers of Ei, and set equal to zero.

=
}2

4
AD − }2

4
2A∆ω +

}
2
AEi +

}
2
EiD −

}
2

2∆ωEi + E2
i −

}2

4
|B|2

= E2
i +

}
2

(A+D − 2∆ω)Ei +
}2

4

(
AD − 2A∆ω − |B|2

)
= 0 (B.4)

Use the quadratic equation to solve for Ei.

Ei =
−}

2
(A+D − 2∆ω)±

√
}2

4
(A+D − 2∆ω)2 − 4 (1) }2

4

(
AD − 2A∆ω − |B|2

)
2 (1)

(B.5)



168

Now pull out the common
√

}2

4
= }

2
from the radical, expand the quadratic term, and simplify

to rewrite the eigenvalues.

Ei =
1

2

[
}
2

(−A−D + 2∆ω)

±}
2

√
A2 +D2 + 4 (∆ω)2 + 2AD − 4A∆ω − 4D∆ω − 4AD + 8A∆ω + 4 |B|2

]
=

1

2

[
}
2

(−A−D + 2∆ω)

±}
2

√
A2 +D2 + 4 (∆ω)2 − 4D∆ω − 2AD + 4A∆ω + 4 |B|2

]
(B.6)

We can write this in a more compact way by writing the first six terms under the radical as a

quadratic term. Doing so and pulling a factor of −}
2

out front gives us eigenvalues of

E± = −}
4

[
(A+D − 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

]
. (B.7)

Note that E+ > E−. The ± in E± refers to the higher (+) and lower (−) eigenvalues (and not

to the sign to use in ∓).

Now that we have the eigenvalues of our effective Hamiltonian, the energies E±, we can cal-

culate our eigenstates |±〉 that satisfy

Ĥ |±〉 = E± |±〉 . (B.8)

We can rewrite this requirement as(
Ĥ − E±I2×2

)
|±〉 = |0〉 , (B.9)

where |0〉 is the zero vector.

Defining

|±〉 ≡

 ca±

cb±

 , (B.10)
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we can rewrite this as a matrix equation using the previously derived Hamiltonian. (See Equation

B.1 and Appendix A.) (
Ĥ − E±I2×2

)
|±〉 = |0〉−}

2

 A B

B∗ D − 2∆ω

− E±
 1 0

0 1

 ca±

cb±

 =

 0

0


−}

2

 A B

B∗ D − 2∆ω

−
 E± 0

0 E±

 ca±

cb±

 =

 0

0


 −}

2
A− E± −}

2
B

−}
2
B∗ −}

2
D + }

2
2∆ω − E±

 ca±

cb±

 =

 0

0

 (B.11)

This gives us two linear equations:(
−}

2
A− E±

)
ca± +

(
−}

2
B

)
cb± = 0, (B.12)

and (
−}

2
B∗
)
ca± +

(
−}

2
D +

}
2

2∆ω − E±
)
cb± = 0. (B.13)

Solve the Equation B.12 for ca± in terms of cb±. (It is equivalent to solve Equation B.13 for

ca± in terms of cb±. See Aside 1 below.)

Begin by adding the cb± term to both sides.(
−}

2
A− E±

)
ca± =

(
}
2
B

)
cb± (B.14)

Divide both sides by the factor preceding ca±.(
−}

2
A− E±

)
ca± =

(
}
2
B

)
cb±

ca± =
}
2
B

−}
2
A− E±

cb± (B.15)

Now let us examine the following relationship in more detail. If we ignore normalization for

the moment, we have the freedom to choose one of the coefficients. For convenience, choose

cb± ≡ −
}
2
A− E±. (B.16)



170

Inserting this into Equation B.15, we find

ca± =
}
2
B

−}
2
A− E±

cb±

ca± =
}
2
B

−}
2
A− E±

(
−}

2
A− E±

)
ca± =

}
2
B. (B.17)

Thus,  ca±

cb±

 =

 }
2
B

−}
2
A− E±

 , (B.18)

or

|±〉 =

(
}
2
B

)
|a〉+

(
−}

2
A− E±

)
|b〉 . (B.19)

Now we insert E± from above (Equation B.7), and rearrange to obtain

|±〉

=

(
}
2
B

)
|a〉+

(
−}

2
A−

(
−}

4

[
(A+D − 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

]))
|b〉

=

(
}
2
B

)
|a〉+

(
−}

2
A+

}
2

1

2

[
(A+D − 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

])
|b〉

=

(
}
2
B

)
|a〉+

(
}
2

1

2

[
(−A+D − 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

])
|b〉 .

(B.20)

Finally we pull out a negative sign in the first term of the |b〉 coefficient so that the first term in

the parentheses matches the quadratic term in the parentheses under the radical.

|±〉 =

(
}
2
B

)
|a〉+

(
}
2

1

2

[
− (A−D + 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

])
|b〉 .

(B.21)

Any scalar multiple of an eigenstate is also an eigenstate, and we have not yet normalized these

states. Thus, for mostly aesthetic reasons, we choose to multiply by 4
} and work with the following

new eigenstates:

|±〉′ = 2B |a〉+

[
− (A−D + 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

]
|b〉 . (B.22)
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(Again, we could have reached an alternate, equivalent eigenstate had we followed the argu-

ment of Aside 1. See Aside 2.)

We will concentrate on the lower energy of these eigenstates,

|−〉′ = 2B |a〉+

[
− (A−D + 2∆ω) +

√
(A−D + 2∆ω)2 + 4 |B|2

]
|b〉 , (B.23)

which has energy

E− = −}
4

[
(A+D − 2∆ω) +

√
(A−D + 2∆ω)2 + 4 |B|2

]
. (B.24)

(In Aside 3 below, we show how one arrives at the same result if one follows the arguments of

the other Asides.)

We focus on this lower energy state because it is smoothly connected to the unperturbed ground

state, |a〉. We know this because of the adiabatic theorem of quantum mechanics as described in

the main text.

Now let us rewrite |−〉′ in a more standard form. To make the calculation easier to follow, we

will define

x ≡ A−D + 2∆ω (B.25)

and

y ≡ 2B. (B.26)

This yields

|−〉′ = y |a〉+
(
−x+

√
x2 + y2

)
|b〉 . (B.27)

As before, any scalar multiple of an eigenstate is also an eigenstate, so we choose to divide by
1√
x2+y2

to get the new eigenstate

|−〉′′ = y√
x2 + y2

|a〉+

(
−x√
x2 + y2

+ 1

)
|b〉 . (B.28)

To rewrite this, we now define an angle θ using the triangle as shown below.

With this definition, we can rewrite our eigenstate using trigonometric functions as follows:

|−〉′′ = sin θ |a〉+ (− cos θ + 1) |b〉 . (B.29)
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Now we use half-angle identities to rewrite sin θ and cos θ in terms of θ
2
.

|−〉′′ = 2 sin

(
θ

2

)
cos

(
θ

2

)
|a〉+

[
−
(

1− 2 sin2

(
θ

2

))
+ 1

]
|b〉

= 2 sin

(
θ

2

)
cos

(
θ

2

)
|a〉+ 2 sin2

(
θ

2

)
|b〉 (B.30)

Again we divide by a scalar, 2 sin
(
θ
2

)
this time, to get a simplified rescaled eigenvector.

|−〉′′′ = cos

(
θ

2

)
|a〉+ sin

(
θ

2

)
|b〉 (B.31)

Finally, we will define a phase for these components. Until now, we have ignored the phase

of the components. However, in the original state, Equation B.23, the coefficient of |a〉 carries the

phase of B; each term in the sum is proportional to EqE∗q−1, which gives B its complex phase.

Define a phase angle φ such that B = |B|jφ. The coefficient of |b〉 is purely real; it depends only

on A and D, which are proportional to |Eq|2, and on the magnitude of B. Thus, |b〉 has no phase

term. With proper phases, then, Equation B.31 becomes

|−〉′′′′ = cos

(
θ

2

)
|a〉 ejφ + sin

(
θ

2

)
|b〉 . (B.32)

The overall phase of the eigenstate is arbitrary. Thus, for aesthetic reasons of symmetry, shift

the overall phase of the eigenstate by −φ
2
. This yields the final eigenstate of

|ψ〉 = cos

(
θ

2

)
ej

φ
2 |a〉+ sin

(
θ

2

)
e−j

φ
2 |b〉 . (B.33)

The angles are as defined above, with

θ = tan−1
(y
x

)
= tan−1

(
2 |B|

A−D + 2∆ω

)
(B.34)
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and

B = |B|jφ . (B.35)

Note that because |ejα| = 1 and sin2 β + cos2 β = 1 for all α and β, |ψ〉 is a normalized

eigenstate.

|ca|2 + |cb|2 =

(
cos

(
θ

2

) ∣∣∣ej φ2 ∣∣∣)2

+

(
sin

(
θ

2

) ∣∣∣e−j φ2 ∣∣∣)2

= sin2

(
θ

2

)
+ cos2

(
θ

2

)
= 1 (B.36)

Aside 1:

We can also solve the second equation (Equation B.13) for ca± in terms of cb±. Again begin by

adding the cb± term to both sides.(
−}

2
B∗
)
ca± =

(
}
2
D − }

2
2∆ω + E±

)
cb± (B.37)

Divide both sides by the factor preceding ca±.

ca± =
}
2
D − }

2
2∆ω + E±

−}
2
B∗

cb± (B.38)

Although Equation B.15 and Equation B.38 are not obviously equivalent, we can show that

they are based on the requirement that the determinant of the matrix Ĥ − EiI2×2 equals zero.

From Equation B.3, we have∣∣∣∣∣∣ −
}
2
A− E± −}

2
B

−}
2
B∗ −}

2
D + }

2
2∆ω − E±

∣∣∣∣∣∣ = 0. (B.39)

Calculating the determinant, we have(
−}

2
A− E±

)(
−}

2
D +

}
2

2∆ω − E±
)
−
(
−}

2
B

)(
−}

2
B∗
)

= 0. (B.40)

We can rearrange to get equivalent ratios. Begin by adding the second term to both sides.(
−}

2
A− E±

)(
−}

2
D +

}
2

2∆ω − E±
)

=

(
−}

2
B

)(
−}

2
B∗
)

(B.41)
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Next divide both sides by
(
−}

2
A− E±

) (
−}

2
B∗
)
.

−}
2
D + }

2
2∆ω − E±
−}

2
B∗

=
−}

2
B

−}
2
A− E±

(B.42)

Finally, multiply both sides by −1 to get

}
2
D − }

2
2∆ω + E±

−}
2
B∗

=
}
2
B

−}
2
A− E±

. (B.43)

Note that these two equivalent ratios are the same as the ratios in Equation B.15 and Equation

B.38, so the two relationships between ca± and cb± are equivalent.

Aside 2:

We could have also chosen to use the relationship from Equation B.38,

ca± =
}
2
D − }

2
2∆ω + E±

−}
2
B∗

cb±. (B.44)

Following identical logic, we are free to choose

cb± = −}
2
B∗. (B.45)

This leads to

ca± =
}
2
D − }

2
2∆ω + E±

−}
2
B∗

cb±

=
}
2
D − }

2
2∆ω + E±

−}
2
B∗

(
−}

2
B∗
)

=
}
2
D − }

2
2∆ω + E±. (B.46)

Thus,  ca±

cb±

 =

 }
2
D − }

2
2∆ω + E±

−}
2
B∗

 , (B.47)

or

|±〉 =

(
}
2
D − }

2
2∆ω + E±

)
|a〉+

(
−}

2
B∗
)
|b〉 . (B.48)
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Now we insert E± from above (Equation B.7), and rearrange to obtain

|±〉 =

(
}
2
D − }

2
2∆ω +

(
−}

4

[
(A+D − 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

]))
|a〉

+

(
−}

2
B∗
)
|b〉

=

(
}
2
D − }

2
2∆ω +

(
−}

2

1

2

[
(A+D − 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

]))
|a〉

+

(
−}

2
B∗
)
|b〉

=

(
}
2

1

2

[
(−A+D − 2∆ω)±

√
(A−D + 2∆ω)2 + 4 |B|2

])
|a〉

+

(
−}

2
B∗
)
|b〉 . (B.49)

Finally we pull out a negative sign in the first term of the |b〉 coefficient so that the first term in

the parentheses matches the quadratic term in the parentheses under the radical.

|±〉 =

(
}
2

1

2

[
− (A−D + 2∆ω)±

√
(A−D + 2∆ω)2 + 4 |B|2

])
|a〉+

(
−}

2
B∗
)
|b〉 (B.50)

Any scalar multiple of an eigenstate is also an eigenstate, and we have not yet normalized

these states. Thus, for mostly aesthetic reasons, we choose to multiply by −4
} and work with the

following new eigenstates:

|±〉′ =
[
(A−D + 2∆ω)∓

√
(A−D + 2∆ω)2 + 4 |B|2

]
|a〉+ 2B∗ |b〉 , (B.51)

which is equivalent to Equation B.22.

Aside 3:

A similar argument can be made using the lower energy alternative eigenstate from Equation

B.51,

|−〉′ =
[
(A−D + 2∆ω) +

√
(A−D + 2∆ω)2 + 4 |B|2

]
|a〉+ 2B∗ |b〉 . (B.52)

Again rewrite |−〉′ in a more standard form. To make the calculation easier to follow, we will

define

x ≡ A−D + 2∆ω (B.53)
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and

y ≡ 2B∗. (B.54)

This now yields

|−〉′ =
(
x+

√
x2 + y2

)
|a〉+ y |b〉 . (B.55)

As before, any scalar multiple of an eigenstate is also an eigenstate, so we choose to divide by
1√
x2+y2

to get the new eigenstate

|−〉′′ =

(
x√

x2 + y2
+ 1

)
|a〉+

y√
x2 + y2

|b〉 . (B.56)

To rewrite this, we now define an angle θ using the triangle as shown below:

With this definition, we can rewrite our eigenstate using trigonometric functions

|−〉′′ = (cos θ + 1) |a〉+ sin θ |b〉 . (B.57)

Now we use half-angle identities to rewrite sin θ and cos θ in terms of θ
2
.

|−〉′′ = 2 cos2

(
θ

2

)
|a〉+ 2 cos

(
θ

2

)
sin

(
θ

2

)
|b〉 (B.58)

Again we divide by a scalar, 2 cos
(
θ
2

)
this time, to get the following simplified rescaled eigen-

vector:

|−〉′′′ = cos

(
θ

2

)
|a〉+ sin

(
θ

2

)
|b〉 . (B.59)

Finally, we will define a phase for these components. Until now, we have ignored the phase

of the components. However, in the original state, Equation B.51, the coefficient of |a〉 is purely

real; it depends only on A and D, which are proportional to |Eq|2, and on the magnitude of B.
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Thus, |a〉 has no phase term. The coefficient of |b〉 carries the phase of B∗; each term in the sum is

proportional to E∗qEq−1, which gives B∗ its complex phase. The phase angle φ is defined such that

B = |B|jφ . (B.60)

Thus, the phase of B∗ is −φ. With proper phases, then, Equation B.59 becomes

|−〉′′′′ = cos

(
θ

2

)
|a〉+ sin

(
θ

2

)
|b〉 e−jφ. (B.61)

The overall phase of the eigenstate is arbitrary. Thus, for aesthetic reasons of symmetry, shift

the overall phase of the eigenstate by φ
2
. This yields the final eigenstate of

|ψ〉 = cos

(
θ

2

)
ej

φ
2 |a〉+ sin

(
θ

2

)
e−j

φ
2 |b〉 . (B.62)

The angles are as defined above, with

θ = tan−1
(y
x

)
= tan−1

(
2 |B|

A−D + 2∆ω

)
(B.63)

and

B = |B|jφ . (B.64)

This is the same result we obtained when we chose to use the other eigenstates.
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Appendix C: Propagation in the Raman Medium

The expectation value of the dipole moment operator is given (as discussed in the main text in

Section 2.3) by

P (t) =
〈
ψ (t)

∣∣P̂ ∣∣ψ (t)
〉
. (C.1)

The wavefunction and dipole moment operator are given by

∣∣ψ (t)
〉
≡ ca (t) e−jωat

∣∣a〉+ cb (t) e−jωbt
∣∣b〉+

∑
i

ci (t) e
−jωit

∣∣i〉 (C.2)

and

P̂ ≡
∑
i

µai
∣∣a〉〈i∣∣+

∑
i

µbi
∣∣b〉〈i∣∣+

∑
i

µ∗ai
∣∣i〉〈a∣∣+

∑
i

µ∗bi
∣∣i〉〈b∣∣. (C.3)

Calculate the expectation value. Begin by acting P̂ on
∣∣ψ (t)

〉
(Equation C.3 on Equation C.2).

P̂
∣∣ψ (t)

〉
=

(∑
i

µai
∣∣a〉〈i∣∣+

∑
i

µbi
∣∣b〉〈i∣∣+

∑
i

µ∗ai
∣∣i〉〈a∣∣+

∑
i

µ∗bi
∣∣i〉〈b∣∣)

×

(
ca (t) e−jωat

∣∣a〉+ cb (t) e−jωbt
∣∣b〉+

∑
i

ci (t) e
−jωit

∣∣i〉) (C.4)

Using the orthonormality of states,
〈
n
∣∣m〉 = δnm, this reduces to

P̂
∣∣ψ (t)

〉
=
∑
i

µai
∣∣a〉ci (t) e−jωit + µbi

∣∣b〉ci (t) e−jωit + µ∗ai
∣∣i〉ca (t) e−jωat + µ∗bi

∣∣i〉cb (t) e−jωbt.

(C.5)

Now act
〈
ψ (t)

∣∣ on P̂
∣∣ψ (t)

〉
(Equation C.5) to get P (t) (Equation C.1).

P (t) =
〈
ψ
∣∣P̂ ∣∣ψ〉

=

(
c∗a (t) ejωat

〈
a
∣∣+ c∗b (t) ejωbt

〈
b
∣∣+
∑
i

c∗i (t) ejωit
〈
i
∣∣)

×
(∑

i

µai
∣∣a〉ci (t) e−jωit + µbi

∣∣b〉ci (t) e−jωit
+µ∗ai

∣∣i〉ca (t) e−jωat + µ∗bi
∣∣i〉cb (t) e−jωbt

)
(C.6)
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Again use the orthonormality of states,
〈
n
∣∣m〉 = δnm. Leaving out the explicit time depen-

dence for clarity, this yields

P (t)

=
∑
i

c∗aciµaie
j(ωa−ωi)t +

∑
i

c∗bciµbie
j(ωb−ωi)t +

∑
i

cac
∗
iµ
∗
aie

j(ωi−ωa)t +
∑
i

cbc
∗
iµ
∗
bie

j(ωi−ωb)t.

(C.7)

Now use the expression for ci from the derivation of the effective Hamiltonian. (See Equation

A.31 and Appendix A.)

ci =
1

2}
∑
q

[
Eqµ

∗
aica

(ωq + ωi − ωa)
ej(ωq+ωi−ωa)t−jkqz +

E∗qµ
∗
aica

(−ωq + ωi − ωa)
ej(−ωq+ωi−ωa)t+jkqz

+
Eqµ

∗
bicb

(ωq + ωi − ωb)
ej(ωq+ωi−ωb)t−jkqz +

E∗qµ
∗
bicb

(−ωq + ωi − ωb)
ej(−ωq+ωi−ωb)t+jkqz

]
(C.8)

Plug this expression (Equation C.8) in to the above expression for P (t) (Equation C.7). For

clarity, examine one term at a time.

The first term of the equation above becomes∑
i

c∗aciµaie
j(ωa−ωi)t =

∑
i

c∗aµaie
j(ωa−ωi)t

×
{

1

2}
∑
q

[
Eqµ

∗
aica(

ωq + ωi − ωa
)ej(ωq+ωi−ωa)t−jkqz

+
E∗qµ

∗
aica(

− ωq + ωi − ωa
)ej(−ωq+ωi−ωa)t+jkqz

+
Eqµ

∗
bicb(

ωq + ωi − ωb
)ej(ωq+ωi−ωb)t−jkqz

+
E∗qµ

∗
bicb(

− ωq + ωi − ωb
)ej(−ωq+ωi−ωb)t+jkqz]}. (C.9)
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Distribute, and rewrite this as

=
1

2}
∑
i

∑
q

∣∣ca∣∣2∣∣µai∣∣2Eq 1

ωq + ωi − ωa
ejωqt−jkqz (C.10)

+
1

2}
∑
i

∑
q

∣∣ca∣∣2∣∣µai∣∣2E∗q 1

−ωq + ωi − ωa
e−jωqt+jkqz (C.11)

+
1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biEq

1

ωq + ωi − ωb
ej
(
ωq+ωa−ωb

)
t−jkqz (C.12)

+
1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biE
∗
q

1

−ωq + ωi − ωb
ej
(
−ωq+ωa−ωb

)
t+jkqz. (C.13)

Now examine the second term of the equation for P (t) (Equation C.7).∑
i

c∗bciµbie
j(ωb−ωi)t =

∑
i

c∗bµbie
j(ωb−ωi)t

×
{

1

2}
∑
q

[
Eqµ

∗
aica(

ωq + ωi − ωa
)ej(ωq+ωi−ωa)t−jkqz

+
E∗qµ

∗
aica(

− ωq + ωi − ωa
)ej(−ωq+ωi−ωa)t+jkqz

+
Eqµ

∗
bicb(

ωq + ωi − ωb
)ej(ωq+ωi−ωb)t−jkqz

+
E∗qµ

∗
bicb(

− ωq + ωi − ωb
)ej(−ωq+ωi−ωb)t+jkqz]} (C.14)

Distribute, and rewrite this as

=
1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiEq

1

ωq + ωi − ωa
ej
(
ωq−ωa+ωb

)
t−jkqz (C.15)

+
1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiE

∗
q

1

−ωq + ωi − ωa
ej
(
−ωq−ωa+ωb

)
t+jkqz (C.16)

+
1

2}
∑
i

∑
q

∣∣cb∣∣2∣∣µbi∣∣2Eq 1

ωq + ωi − ωb
ejωqt−jkqz (C.17)

+
1

2}
∑
i

∑
q

∣∣cb∣∣2∣∣µbi∣∣2E∗q 1

−ωq + ωi − ωb
e−jωqt+jkqz. (C.18)
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The third term of the equation for P (t) (Equation C.7) is∑
i

cac
∗
iµ
∗
aie

j
(
ωi−ωa

)
t =

∑
i

caµ
∗
aie

j
(
ωi−ωa

)
t

×
{

1

2}
∑
q

[
Eqµ

∗
aica(

ωq + ωi − ωa
)ej(ωq+ωi−ωa)t−jkqz

+
E∗qµ

∗
aica(

− ωq + ωi − ωa
)ej(−ωq+ωi−ωa)t+jkqz

+
Eqµ

∗
bicb(

ωq + ωi − ωb
)ej(ωq+ωi−ωb)t−jkqz

+
E∗qµ

∗
bicb(

− ωq + ωi − ωb
)ej(−ωq+ωi−ωb)t+jkqz]}∗. (C.19)

Take the complex conjugate and distribute.

=
1

2}
∑
i

∑
q

∣∣ca∣∣2∣∣µai∣∣2E∗q 1

ωq + ωi − ωa
e−jωqt+jkqz (C.20)

+
1

2}
∑
i

∑
q

∣∣ca∣∣2∣∣µai∣∣2Eq 1

−ωq + ωi − ωa
ejωqt−jkqz (C.21)

+
1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiE

∗
q

1

ωq + ωi − ωb
ej
(
−ωq−ωa+ωb

)
t+jkqz (C.22)

+
1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiEq

1

−ωq + ωi − ωb
ej
(
ωq−ωa+ωb

)
t−jkqz (C.23)

Note that this is the complex conjugate of the first term (lines C.10, C.11, C.12, and C.13).

Now for the fourth term of the equation for P (t) (Equation C.7).∑
i

cbc
∗
iµ
∗
bie

j(ωi−ωb)t =
∑
i

cbµ
∗
bie

j(ωi−ωb)t

×
{

1

2}
∑
q

[
Eqµ

∗
aica(

ωq + ωi − ωa
)ej(ωq+ωi−ωa)t−jkqz

+
E∗qµ

∗
aica(

− ωq + ωi − ωa
)ej(−ωq+ωi−ωa)t+jkqz

+
Eqµ

∗
bicb

(ωq + ωi − ωb)
ej(ωq+ωi−ωb)t−jkqz

+
E∗qµ

∗
bicb

(−ωq + ωi − ωb)
ej(−ωq+ωi−ωb)t+jkqz

]}∗
(C.24)
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Take the complex conjugate and distribute.

=
1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biE
∗
q

1

ωq + ωi − ωa
ej(−ωq+ωa−ωb)t+jkqz (C.25)

+
1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biEq

1

−ωq + ωi − ωa
ej(ωq+ωa−ωb)t−jkqz (C.26)

+
1

2}
∑
i

∑
q

|cb|2 |µbi|2E∗q
1

ωq + ωi − ωb
e−jωqt+jkqz (C.27)

+
1

2}
∑
i

∑
q

|cb|2 |µbi|2Eq
1

−ωq + ωi − ωb
ejωqt−jkqz (C.28)

Note that this is the complex conjugate of the second term (lines C.15, C.16, C.17, and C.18).

Now rewrite these terms in terms of the coupling and dispersion constants used in the previous

derivation in order to get a more concise expression for P (t).

aq ≡
1

2}2

∑
i

|µai|2
[

1

(ωi − ωa)− ωq
+

1

(ωi − ωa) + ωq

]
(C.29)

bq ≡
1

2}2

∑
i

µaiµ
∗
bi

[
1

(ωi − ωa)− ωq
+

1

(ωi − ωb) + ωq

]
(C.30)

dq ≡
1

2}2

∑
i

|µbi|2
[

1

(ωi − ωb)− ωq
+

1

(ωi − ωb) + ωq

]
(C.31)

In order to simplify the expression, first sum pairs of lines.

First sum lines C.10 and C.21.

1

2}
∑
i

∑
q

|ca|2 |µai|2Eq
1

ωq + ωi − ωa
ejωqt−jkqz

+
1

2}
∑
i

∑
q

|ca|2 |µai|2Eq
1

−ωq + ωi − ωa
ejωqt−jkqz

=
1

2}
∑
i

∑
q

|ca|2 |µai|2Eqejωqt−jkqz
(

1

ωq + ωi − ωa
+

1

−ωq + ωi − ωa

)
(C.32)

Pull the terms independent of i out in front of the sum over i, and rewrite using 1
2} = } 1

2}2 .

= }
∑
q

|ca|2Eqejωqt−jkqz
[

1

2}2

∑
i

|µai|2
(

1

ωq + ωi − ωa
+

1

−ωq + ωi − ωa

)]
(C.33)
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Use the above definition of aq (Equation C.29).

= }
∑
q

|ca|2Eqejωqt−jkqzaq (C.34)

Now sum lines C.11 and C.20.

1

2}
∑
i

∑
q

|ca|2 |µai|2E∗q
1

−ωq + ωi − ωa
e−jωqt+jkqz

+
1

2}
∑
i

∑
q

|ca|2 |µai|2E∗q
1

ωq + ωi − ωa
e−jωqt+jkqz

=
1

2}
∑
i

∑
q

|ca|2 |µai|2E∗q e−jωqt+jkqz
(

1

−ωq + ωi − ωa
+

1

ωq + ωi − ωa

)
(C.35)

As above, pull the terms independent of i out in front of the sum over i, and rewrite using
1
2} = } 1

2}2 .

= }
∑
q

|ca|2E∗q e−jωqt+jkqz
[

1

2}2

∑
i

|µai|2
(

1

−ωq + ωi − ωa
+

1

ωq + ωi − ωa

)]
(C.36)

Use the above definition of aq (Equation C.29).

= }
∑
q

|ca|2E∗q e−jωqt+jkqzaq (C.37)

Now sum lines C.17 and C.28.

1

2}
∑
i

∑
q

|cb|2 |µbi|2Eq
1

ωq + ωi − ωb
ejωqt−jkqz

+
1

2}
∑
i

∑
q

|cb|2 |µbi|2Eq
1

−ωq + ωi − ωb
ejωqt−jkqz

=
1

2}
∑
i

∑
q

|cb|2 |µbi|2Eqejωqt−jkqz
(

1

ωq + ωi − ωb
+

1

−ωq + ωi − ωb

)
(C.38)
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As above, pull the terms independent of i out in front of the sum over i, and rewrite using
1
2} = } 1

2}2 .

= }
∑
q

|cb|2Eqejωqt−jkqz
[

1

2}2

∑
i

|µbi|2
(

1

ωq + ωi − ωb
+

1

−ωq + ωi − ωb

)]
(C.39)

Use the above definition of dq (Equation C.31).

= }
∑
q

|cb|2Eqejωqt−jkqzdq (C.40)

Now sum lines C.18 and C.27.

1

2}
∑
i

∑
q

|cb|2 |µbi|2E∗q
1

−ωq + ωi − ωb
e−jωqt+jkqz

+
1

2}
∑
i

∑
q

|cb|2 |µbi|2E∗q
1

ωq + ωi − ωb
e−jωqt+jkqz

=
1

2}
∑
i

∑
q

|cb|2 |µbi|2E∗q e−jωqt+jkqz
(

1

−ωq + ωi − ωb
+

1

ωq + ωi − ωb

)
(C.41)

As above, pull the terms independent of i out in front of the sum over i, and rewrite using
1
2} = } 1

2}2 .

= }
∑
q

|cb|2E∗q e−jωqt+jkqz
[

1

2}2

∑
i

|µbi|2
(

1

−ωq + ωi − ωb
+

1

ωq + ωi − ωb

)]
(C.42)

Use the definition of dq (Equation C.31).

= }
∑
q

|cb|2E∗q e−jωqt+jkqzdq (C.43)
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Next sum lines C.16 and C.22.

1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiE

∗
q

1

−ωq + ωi − ωa
ej(−ωq−ωa+ωb)t+jkqz

+
1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiE

∗
q

1

ωq + ωi − ωb
ej(−ωq−ωa+ωb)t+jkqz

=
1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiE

∗
q e
j(−ωq−ωa+ωb)t+jkqz

(
1

−ωq + ωi − ωa
+

1

ωq + ωi − ωb

)
(C.44)

As above, pull the terms independent of i out in front of the sum over i, and rewrite using
1
2} = } 1

2}2 .

= }
∑
q

cac
∗
bE
∗
q e
j(−ωq−ωa+ωb)t+jkqz

[
1

2}2

∑
i

µ∗aiµbi

(
1

−ωq + ωi − ωa
+

1

ωq + ωi − ωb

)]
(C.45)

The expression in the brackets is the complex conjugate of the definition of bq (Equation C.30).

= }
∑
q

cac
∗
bE
∗
q e
j(−ωq−ωa+ωb)t+jkqzb∗q (C.46)

Rewrite the exponent of this term. Begin by recalling the definitions of ωq and ωm from Ap-

pendix A.

ωq = ω0 + qωm (C.47)

with

ωm ≡ ωb − ωa −∆ω (C.48)

Rewrite the first term in the exponent using the definition of ωq (Equation C.47).

−ωq − ωa + ωb = − (ω0 + qωm)− ωa + ωb (C.49)

Now use the definition of ωm (Equation C.48).

= −ω0 − q (ωb − ωa −∆ω)− ωa + ωb (C.50)
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Subtract and add ∆ω.

= −ω0 − q (ωb − ωa −∆ω) + (−ωa + ωb −∆ω) + ∆ω

= −ω0 − (q − 1) (ωb − ωa −∆ω) + ∆ω (C.51)

Use the definition of ωm (Equation C.48).

= −ω0 − (q − 1)ωm + ∆ω (C.52)

Use the definition of ωq (Equation C.47).

= −ωq−1 + ∆ω (C.53)

Substitute this back into the exponent above (Equation C.46).

}
∑
q

cac
∗
bE
∗
q e
j(−ωq−ωa+ωb)t+jkqzb∗q

= }
∑
q

cac
∗
bE
∗
q e
j(−ωq−1+∆ω)t+jkqzb∗q (C.54)

Now change the index variable from q → q + 1.

= }
∑
q+1

cac
∗
bE
∗
q+1e

j(−ωq+∆ω)t+jkq+1zb∗q+1 (C.55)

Define kq as in Appendix A.

kq ≡ k0 + qkm (C.56)

Use this definition to rewrite kq+1.

kq+1 = k0 + (q + 1)km

= (k0 + qkm) + km

= kq + km (C.57)

Substitute this back into the above exponent (Equation C.55). Also factor out a −1 from the

first term.

}
∑
q+1

cac
∗
bE
∗
q+1e

j(−ωq+∆ω)t+jkq+1zb∗q+1

= }
∑
q+1

cac
∗
bE
∗
q+1e

−j(ωq−∆ω)t+j(kq+km)zb∗q+1 (C.58)
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Since the sum covers all Fourier components (q spans all integers), summing over q is the same

as summing over q + 1.

= }
∑
q

cac
∗
bE
∗
q+1e

−j(ωq−∆ω)t+j(kq+km)zb∗q+1 (C.59)

Now sum lines C.12 and C.26.

1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biEq

1

ωq + ωi − ωb
ej(ωq+ωa−ωb)t−jkqz

+
1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biEq

1

−ωq + ωi − ωa
ej(ωq+ωa−ωb)t−jkqz

=
1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biEqe

j(ωq+ωa−ωb)t−jkqz
(

1

ωq + ωi − ωb
+

1

−ωq + ωi − ωa

)
(C.60)

As above, pull the terms independent of i out in front of the sum over i, and rewrite using
1
2} = } 1

2}2 .

= }
∑
q

c∗acbEqe
j(ωq+ωa−ωb)t−jkqz

[
1

2}2

∑
i

µaiµ
∗
bi

(
1

ωq + ωi − ωb
+

1

−ωq + ωi − ωa

)]
(C.61)

Use the definition of bq (Equation C.30).

= }
∑
q

c∗acbEqe
j(ωq+ωa−ωb)t−jkqzbq (C.62)

Rewrite the first term in the exponent. First use the definition of ωq (Equation C.47).

ωq + ωa − ωb = (ω0 + qωm) + ωa − ωb (C.63)

Use the definition of ωm (Equation C.48).

= ω0 + q (ωb − ωa −∆ω) + ωa − ωb (C.64)

Add and subtract ∆ω.

= ω0 + q (ωb − ωa −∆ω) + (ωa − ωb + ∆ω)−∆ω

= ω0 + q (ωb − ωa −∆ω)− (−ωa + ωb −∆ω)−∆ω

= ω0 + (q − 1) (ωb − ωa −∆ω)−∆ω (C.65)
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Use the definition of ωm (Equation C.48).

= ω0 + (q − 1)ωm −∆ω (C.66)

Use the definition of ωq (Equation C.47).

= ωq−1 −∆ω (C.67)

Plug this into the exponent of the above equation (Equation C.62).

}
∑
q

c∗acbEqe
j(ωq+ωa−ωb)t−jkqzbq

= }
∑
q

c∗acbEqe
j(ωq−1−∆ω)t−jkqzbq (C.68)

Now make a change of index variable from q → q + 1.

= }
∑
q+1

c∗acbEq+1e
j(ωq−∆ω)t−jkq+1zbq+1 (C.69)

As above, since q spans all integers, the sum can be taken to be over q instead of q + 1.

= }
∑
q

c∗acbEq+1e
j(ωq−∆ω)t−jkq+1zbq+1 (C.70)

Now replace kq+1 as above (Equation C.57).

= }
∑
q

c∗acbEq+1e
j(ωq−∆ω)t−j(kq+km)zbq+1 (C.71)

Next sum lines C.15 and C.23.

1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiEq

1

ωq + ωi − ωa
ej(ωq−ωa+ωb)t−jkqz

+
1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiEq

1

−ωq + ωi − ωb
ej(ωq−ωa+ωb)t−jkqz

=
1

2}
∑
i

∑
q

cac
∗
bµ
∗
aiµbiEqe

j(ωq−ωa+ωb)t−jkqz
(

1

ωq + ωi − ωa
+

1

−ωq + ωi − ωb

)
(C.72)
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Once again pull the terms independent of i out in front of the sum over i and rewrite using
1
2} = } 1

2}2 .

= }
∑
q

cac
∗
bEqe

j(ωq−ωa+ωb)t−jkqz

[
1

2}2

∑
i

µ∗aiµbi

(
1

ωq + ωi − ωa
+

1

−ωq + ωi − ωb

)]
(C.73)

Now rewrite the denominators in the parentheses using the definitions of ωq and ωm.

For the first denominator, begin with the definition of ωq (Equation C.47).

ωq + ωi − ωa = (ω0 + qωm) + ωi − ωa (C.74)

Add and subtract ωm.

= (ω0 + qωm + ωm)− ωm + ωi − ωa

= [ω0 + (q + 1)ωm]− ωm + ωi − ωa (C.75)

Use the definition of ωq (Equation C.47).

= ωq+1 − ωm + ωi − ωa (C.76)

Use the definition of ωm (Equation C.48).

= ωq+1 − (ωb − ωa −∆ω) + ωi − ωa

= ωq+1 − ωb + ∆ω + ωi (C.77)

As in the previous derivation, we are assuming that the detuning, ∆ω, is small compared to ωb,

ωq+1, and ωi. Thus the first denominator can be approximated as

≈ ωq+1 − ωb + ωi. (C.78)

Similarly, the second denominator in the above (Equation C.73) can be rewritten, beginning by

using the definition of ωq (Equation C.47).

−ωq + ωi − ωb = − (ω0 + qωm) + ωi − ωb (C.79)
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Subtract and add ωm.

= − (ω0 + qωm + ωm) + ωm + ωi − ωb

= − (ω0 + (q + 1)ωm) + ωm + ωi − ωb (C.80)

Use the definition of ωq (Equation C.47).

= −ωq+1 + ωm + ωi − ωb (C.81)

Use the definition of ωm (Equation C.48).

= −ωq+1 + (ωb − ωa −∆ω) + ωi − ωb

= −ωq+1 − ωa −∆ω + ωi (C.82)

Assuming a small detuning as above, the second denominator is approximately

≈ −ωq+1 − ωa + ωi. (C.83)

Substituting these rewritten denominators (Equations C.78 and C.83) into the expression for

the sum of lines C.15 and C.23 (Equation C.73), it becomes

}
∑
q

cac
∗
bEqe

j(ωq−ωa+ωb)t−jkqz

[
1

2}2

∑
i

µ∗aiµbi

(
1

ωq + ωi − ωa
+

1

−ωq + ωi − ωb

)]

≈ }
∑
q

cac
∗
bEqe

j(ωq−ωa+ωb)t−jkqz

[
1

2}2

∑
i

µ∗aiµbi

(
1

ωq+1 − ωb + ωi
+

1

−ωq+1 − ωa + ωi

)]
.

(C.84)

Note the expression in the bracket is complex conjugate of the definition of bq with q = q + 1

(Equation C.30), so

= }
∑
q

cac
∗
bEqe

j(ωq−ωa+ωb)t−jkqzb∗q+1. (C.85)

Rewrite the first part of the exponent using the definition of ωq (Equation C.47).

ωq − ωa + ωb = (ω0 + qωm)− ωa + ωb (C.86)
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Now use the definition of ωm (Equation C.48).

= ω0 + q (ωb − ωa −∆ω)− ωa + ωb (C.87)

Subtract and add ∆ω.

= ω0 + q (ωb − ωa −∆ω) + (−ωa + ωb −∆ω) + ∆ω

= ω0 + (q + 1) (ωb − ωa −∆ω) + ∆ω (C.88)

Now use the definition of ωm again.

= [ω0 + (q + 1)ωm] + ∆ω (C.89)

Again, use the definition of ωq (Equation C.47) with q = q + 1.

= ωq+1 + ∆ω (C.90)

Plug this back in the exponent above (Equation C.85).

}
∑
q

cac
∗
bEqe

j(ωq−ωa+ωb)t−jkqzb∗q+1

= }
∑
q

cac
∗
bEqe

j(ωq+1+∆ω)t−jkqzb∗q+1 (C.91)

Now change the index variable from q → q − 1.

= }
∑
q−1

cac
∗
bEq−1e

j(ωq+∆ω)t−jkq−1zb∗q (C.92)

Use the definition of kq (Equation C.56) to rewrite kq−1.

kq−1 = k0 + (q − 1) km

= (k0 + qkm)− km (C.93)

Again use the definition of kq (Equation C.56).

= kq − km (C.94)
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Use this to replace kq−1 above (Equation C.92).

}
∑
q−1

cac
∗
bEq−1e

j(ωq+∆ω)t−jkq−1zb∗q

= }
∑
q−1

cac
∗
bEq−1e

j(ωq+∆ω)t−j(kq−km)zb∗q (C.95)

As above, since q spans all integers, the sum can be taken to be over q instead of q − 1.

= }
∑
q

cac
∗
bEq−1e

j(ωq+∆ω)t−j(kq−km)zb∗q (C.96)

Next sum lines C.13 and C.25.

1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biE
∗
q

1

−ωq + ωi − ωb
ej(−ωq+ωa−ωb)t+jkqz

+
1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biE
∗
q

1

ωq + ωi − ωa
ej(−ωq+ωa−ωb)t+jkqz

=
1

2}
∑
i

∑
q

c∗acbµaiµ
∗
biE
∗
q e
j(−ωq+ωa−ωb)t+jkqz

(
1

−ωq + ωi − ωb
+

1

ωq + ωi − ωa

)
(C.97)

As above, pull the terms independent of i out in front of the sum over i, and rewrite using
1
2} = } 1

2}2 .

= }
∑
q

c∗acbE
∗
q e
j(−ωq+ωa−ωb)t+jkqz

[
1

2}2

∑
i

µaiµ
∗
bi

(
1

−ωq + ωi − ωb
+

1

ωq + ωi − ωa

)]
(C.98)

Rewrite the denominators in the parentheses using the above approximations (Equations C.78

and C.83).

= }
∑
q

c∗acbE
∗
q e
j(−ωq+ωa−ωb)t+jkqz

[
1

2}2

∑
i

µaiµ
∗
bi

(
1

−ωq+1 + ωi − ωa
+

1

ωq+1 + ωi − ωb

)]
(C.99)

Note that quantity in the bracket is the definition of bq (Equation C.30) with q = q + 1.

= }
∑
q

c∗acbE
∗
q e
j(−ωq+ωa−ωb)t+jkqzbq+1 (C.100)
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Rewrite the first part of the exponent using the definition of ωq (Equation C.47).

−ωq + ωa − ωb = − (ω0 + qωm) + ωa − ωb (C.101)

Now use the definition of ωm (Equation C.48).

= −ω0 − q (ωb − ωa −∆ω) + ωa − ωb (C.102)

Add and subtract ∆ω.

= −ω0 − q (ωb − ωa −∆ω) + (ωa − ωb + ∆ω)−∆ω

= −ω0 − q (ωb − ωa −∆ω)− (−ωa + ωb −∆ω)−∆ω

= −ω0 − (q + 1) (ωb − ωa −∆ω)−∆ω (C.103)

Now use the definition of ωm (Equation C.48) again.

= −ω0 − (q + 1)ωm −∆ω

= − [ω0 + (q + 1)ωm]−∆ω (C.104)

The definition of ωq (Equation C.47) yields

= −ωq+1 −∆ω. (C.105)

Plug this back into the exponent above (Equation C.100).

}
∑
q

c∗acbE
∗
q e
j(−ωq+ωa−ωb)t+jkqzbq+1

= }
∑
q

c∗acbE
∗
q e
j(−ωq+1−∆ω)t+jkqzbq+1 (C.106)

Now change the index variable from q → q − 1.

= }
∑
q−1

c∗acbE
∗
q−1e

j(−ωq−∆ω)t+jkq−1zbq (C.107)

Use the expression above to replace kq−1 (Equation C.94).

= }
∑
q−1

c∗acbE
∗
q−1e

j(−ωq−∆ω)t+j(kq−km)zbq (C.108)
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As above, since q spans all integers, the sum can be taken to be over q instead of q − 1.

= }
∑
q

c∗acbE
∗
q−1e

j(−ωq−∆ω)t+j(kq−km)zbq (C.109)

Now combine all of these contributions (Equations C.34, C.37, C.40, C.43, C.59, C.71, C.96,

and C.109) to get an expression for P (t).

P (t) = }
∑
q

|ca|2Eqejωqt−jkqzaq

+}
∑
q

|ca|2E∗q e−jωqt+jkqzaq

+}
∑
q

|cb|2Eqejωqt−jkqzdq

+}
∑
q

|cb|2E∗q e−jωqt+jkqzdq

+}
∑
q

cac
∗
bE
∗
q+1e

−j(ωq−∆ω)t+j(kq+km)zb∗q+1

+}
∑
q

c∗acbEq+1e
j(ωq−∆ω)t−j(kq+km)zbq+1

+}
∑
q

cac
∗
bEq−1e

j(ωq+∆ω)t−j(kq−km)zb∗q

+}
∑
q

c∗acbE
∗
q−1e

j(−ωq−∆ω)t+j(kq−km)zbq (C.110)

Next write the total dipole moment as a sum of its Fourier coefficients, in the form of the

following:

P (t) =
1

2

∑
q

Pqe
jωqt−jkqz +

1

2

∑
q

P ∗q e
−jωqt+jkqz. (C.111)
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Begin by rearranging the above expression for P (t) (Equation C.110) to match the Fourier

form, dividing and multiplying all terms by 2.

P (t) =
1

2

∑
q

[
2} |ca|2Eqaq

]
ejωqt−jkqz

+
1

2

∑
q

[
2} |ca|2E∗qaq

]
e−jωqt+jkqz

+
1

2

∑
q

[
2} |cb|2Eqdq

]
ejωqt−jkqz

+
1

2

∑
q

[
2} |cb|2E∗qdq

]
e−jωqt+jkqz

+
1

2

∑
q

[
2}cac∗bE∗q+1b

∗
q+1e

j∆ωt+jkmz
]
e−jωqt+jkqz

+
1

2

∑
q

[
2}c∗acbEq+1bq+1e

−j∆ωt−jkmz
]
ejωqt−jkqz

+
1

2

∑
q

[
2}cac∗bEq−1b

∗
qe
j∆ωt+jkmz

]
ejωqt−jkqz

+
1

2

∑
q

[
2}c∗acbE∗q−1bqe

−j∆ωt−jkmz
]
e−jωqt+jkqz (C.112)

Group terms with like exponentials.

P
(
t
)

=

1

2

∑
q

[
2}
∣∣ca∣∣2Eqaq + 2}

∣∣cb∣∣2Eqdq + 2}c∗acbEq+1bq+1e
−j∆ωt−jkmz

+2}cac∗bEq−1b
∗
qe
j∆ωt+jkmz

]
ejωqt−jkqz

+
1

2

∑
q

[
2}
∣∣ca∣∣2E∗qaq + 2}

∣∣cb∣∣2E∗qdq + 2}cac∗bE∗q+1b
∗
q+1e

j∆ωt+jkmz

+2}c∗acbE∗q−1bqe
−j∆ωt−jkmz

]
e−jωqt+jkqz (C.113)
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Note that aq = a∗q and dq = d∗q because both are real, so we can use the complex conjugate

forms in the second bracket.

P
(
t
)

=

1

2

∑
q

[
2}
∣∣ca∣∣2Eqaq + 2}

∣∣cb∣∣2Eqdq + 2}c∗acbEq+1bq+1e
−j∆ωt−jkmz

+2}cac∗bEq−1b
∗
qe
j∆ωt+jkmz

]
ejωqt−jkqz

+
1

2

∑
q

[
2}
∣∣ca∣∣2E∗qa∗q + 2}

∣∣cb∣∣2E∗qd∗q + 2}cac∗bE∗q+1b
∗
q+1e

j∆ωt+jkmz

+2}c∗acbE∗q−1bqe
−j∆ωt−jkmz

]
e−jωqt+jkqz (C.114)

This allows us to simplify to

P (t) =
1

2

∑
q

Pqe
jωqt−jkqz +

1

2

∑
q

P ∗q e
−jωqt+jkqz, (C.115)

with Pq defined as

Pq ≡ 2} |ca|2Eqaq + 2} |cb|2Eqdq + 2}c∗acbEq+1bq+1e
−j∆ωt−jkmz + 2}cac∗bEq−1b

∗
qe
j∆ωt+jkmz.

(C.116)

We can pull out the common 2} to rewrite this term.

Pq = 2}
[
|ca|2Eqaq + |cb|2Eqdq + c∗acbEq+1bq+1e

−j∆ωt−jkmz + cac
∗
bEq−1b

∗
qe
j∆ωt+jkmz

]
(C.117)

The slowly-varying envelope equation for propagation in the z direction for each Fourier com-

ponent of the electric field, Eq, is
∂Eq
∂z

= −j 1

2
ηωqPq, (C.118)

where

η ≡
√
µ

ε0

. (C.119)

Note that we have also assumed that diffraction effects are negligible, so we have dropped a

second-order term in the transverse directions;∇2
⊥Eq ≈ 0, where∇⊥ ≡ ∂

∂x
x̂+ ∂

∂y
ŷ.
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Plug in the above expression for Pq (Equation C.117), and the envelope equation becomes

∂Eq
∂z

= −j 1

2
ηωq

×
[
2}
[
|ca|2Eqaq + |cb|2Eqdq + c∗acbEq+1bq+1e

−j∆ωt−jkmz + cac
∗
bEq−1b

∗
qe
j∆ωt+jkmz

]]
= −jη}ωq

×
[
|ca|2Eqaq + |cb|2Eqdq + c∗acbEq+1bq+1e

−j∆ωt−jkmz + cac
∗
bEq−1b

∗
qe
j∆ωt+jkmz

]
.

(C.120)

This expression can be simplified by making the following phase transformations:

ca ≡ c̃a (C.121)

and

cb ≡ c̃be
j∆ωt+jkmz. (C.122)

Phase transforming the above (Equation C.120) yields

∂Eq
∂z

= −jη}ωq
[∣∣(c̃a)∣∣2Eqaq

+
∣∣(c̃bej∆ωt+jkmz)∣∣2Eqdq

+
(
c̃∗a
)(
c̃be

j∆ωt+jkmz
)
Eq+1bq+1e

−j∆ωt−jkmz

+
(
c̃a
)(
c̃∗be
−j∆ωt−jkmz

)
Eq−1b

∗
qe
j∆ωt+jkmz

]
. (C.123)

Noting that
∣∣eiθ∣∣ = 1 for all θ and that ex + e−x = e0 = 1 for all x, this reduces to

∂Eq
∂z

= −jη}ωq
[
|c̃a|2Eqaq + |c̃b|2Eqdq + c̃∗ac̃bEq+1bq+1 + c̃ac̃

∗
bEq−1b

∗
q

]
. (C.124)

Multiplication by the number of molecules per unit volume, N , yields the slowly-varying en-

velope equation for a macroscopic system.

∂Eq
∂z

= −jη}ωqN
[
|c̃a|2Eqaq + |c̃b|2Eqdq + c̃∗ac̃bEq+1bq+1 + c̃ac̃

∗
bEq−1b

∗
q

]
(C.125)
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Appendix D: Density Matrix Elements

We will calculate the density matrix elements for our density matrix ρ for the previously cal-

culated eigenstate: (See Equation B.33 and Appendix B.)

|ψ〉 = cos

(
θ

2

)
ej

φ
2 |a〉+ sin

(
θ

2

)
e−j

φ
2 |b〉 . (D.1)

Each element ρmn can be calculated with the inner products

ρmn ≡ 〈m|ψ〉 〈ψ|n〉 . (D.2)

First calculate ρaa.

ρaa = 〈a|ψ〉 〈ψ|a〉 (D.3)

Now plug in |ψ〉 from above, conjugating all terms for the bra term.

ρaa = 〈a|
(

cos

(
θ

2

)
ej

φ
2 |a〉+ sin

(
θ

2

)
e−j

φ
2 |b〉

)(
cos

(
θ

2

)
e−j

φ
2 〈a|+ sin

(
θ

2

)
ej

φ
2 〈b|

)
|a〉

(D.4)

Pull the θ terms out of the inner products. Then distribute and use orthonormality of states,

〈n|m〉 = δnm, to simplify the expression.

ρaa =

(
cos

(
θ

2

)
ej

φ
2 〈a|a〉+ sin

(
θ

2

)
e−j

φ
2 〈a|b〉

)
×
(

cos

(
θ

2

)
e−j

φ
2 〈a|a〉+ sin

(
θ

2

)
ej

φ
2 〈b|a〉

)
=

(
cos

(
θ

2

)
ej

φ
2 (1) + sin

(
θ

2

)
e−j

φ
2 (0)

)(
cos

(
θ

2

)
e−j

φ
2 (1) + sin

(
θ

2

)
ej

φ
2 (0)

)
=

(
cos

(
θ

2

)
ej

φ
2

)(
cos

(
θ

2

)
e−j

φ
2

)
ρaa = cos2

(
θ

2

)
(D.5)

The calculations for ρbb are similar.

ρbb = 〈b|ψ〉 〈ψ|b〉 (D.6)
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Now plug in |ψ〉 from above, conjugating all terms for the bra term.

ρbb = 〈b|
(

cos

(
θ

2

)
ej

φ
2 |a〉+ sin

(
θ

2

)
e−j

φ
2 |b〉

)
×
(

cos

(
θ

2

)
e−j

φ
2 〈a|+ sin

(
θ

2

)
ej

φ
2 〈b|

)
|b〉 (D.7)

Pull the θ terms out of the inner products. Then distribute and use orthonormality of states,

〈n|m〉 = δnm, to simplify the expression.

ρbb =

(
cos

(
θ

2

)
ej

φ
2 〈b|a〉+ sin

(
θ

2

)
e−j

φ
2 〈b|b〉

)
×
(

cos

(
θ

2

)
e−j

φ
2 〈a|b〉+ sin

(
θ

2

)
ej

φ
2 〈b|b〉

)
=

(
cos

(
θ

2

)
ej

φ
2 (0) + sin

(
θ

2

)
e−j

φ
2 (1)

)(
cos

(
θ

2

)
e−j

φ
2 (0) + sin

(
θ

2

)
ej

φ
2 (1)

)
=

(
sin

(
θ

2

)
e−j

φ
2

)(
sin

(
θ

2

)
ej

φ
2

)
ρbb = sin2

(
θ

2

)
(D.8)

Now consider the coherence, ρab.

ρab = 〈a|ψ〉 〈ψ|b〉 (D.9)

Now plug in |ψ〉 from above, conjugating all terms for the bra term.

ρab = 〈a|
(

cos

(
θ

2

)
ej

φ
2 |a〉+ sin

(
θ

2

)
e−j

φ
2 |b〉

)(
cos

(
θ

2

)
e−j

φ
2 〈a|+ sin

(
θ

2

)
ej

φ
2 〈b|

)
|b〉

(D.10)
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Pull the θ terms out of the inner products. Then distribute and use orthonormality of states,

〈n|m〉 = δnm, to simplify the expression.

ρab =

(
cos

(
θ

2

)
ej

φ
2 〈a|a〉+ sin

(
θ

2

)
e−j

φ
2 〈a|b〉

)
×
(

cos

(
θ

2

)
e−j

φ
2 〈a|b〉+ sin

(
θ

2

)
ej

φ
2 〈b|b〉

)
=

(
cos

(
θ

2

)
ej

φ
2 (1) + sin

(
θ

2

)
e−j

φ
2 (0)

)(
cos

(
θ

2

)
e−j

φ
2 (0) + sin

(
θ

2

)
ej

φ
2 (1)

)
=

(
cos

(
θ

2

)
ej

φ
2

)(
sin

(
θ

2

)
ej

φ
2

)
= cos

(
θ

2

)
sin

(
θ

2

)
ejφ (D.11)

Finally, we can rewrite this using a half-angle trigonometric formula:

ρab =
1

2
sin (θ) ejφ. (D.12)

Recall that

θ ≡ tan−1

(
2 |B|

A−D + 2∆ω

)
, (D.13)

where B is related to the coupling of the two molecular states. If the coupling is weak, as is the

case for many of our experiments, then the argument of the arctangent is small, and we can use the

small angle approximation, arctan (x) ≈ x. This eliminates the arctangent in our expression.

θ ≈ 2 |B|
A−D + 2∆ω

(D.14)

The small angle approximation can then be used to rewrite ρab.

ρab =
1

2
sin (θ) ejφ (D.15)

For small x, we have sin (x) ≈ x.

ρab ≈
θ

2
ejφ (D.16)

The small angle approximation can also be used to rewrite ρaa.

From Equation D.5, we have

ρaa = cos2

(
θ

2

)
. (D.17)
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For small x, we have cos (x) ≈ 1− x2

2
.

Thus,

ρaa = cos

(
θ

2

)
cos

(
θ

2

)
=

(
1− θ2

8

)(
1− θ2

8

)
ρaa ≈ 1− θ2

4
, (D.18)

where we have ignored the very small higher-order θ terms.

Similarly, the small angle approximation can also be used to rewrite ρbb (Equation D.8).

ρbb = sin2

(
θ

2

)
(D.19)

For small x, we have sin (x) ≈ x.

Thus,

ρbb = sin

(
θ

2

)
sin

(
θ

2

)
≈

(
θ

2

)(
θ

2

)
ρbb ≈

θ2

4
. (D.20)

Thus, we can rewrite our matrix elements as

ρab =
1

2
sin (θ) ejφ

≈ θ

2
ejφ, (D.21)

ρaa = cos2

(
θ

2

)
≈ 1− θ2

4
, (D.22)

and

ρbb = sin2

(
θ

2

)
≈ θ2

4
, (D.23)
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with the approximate equality holding for systems with weak coupling between states.

We can use the similarities between the matrix elements to rewrite the diagonal matrix elements

in terms of the coherence.

Noting that for weak coupling,

|ρab|2 ≈
∣∣∣∣θ2ejφ

∣∣∣∣2
=

θ2

4
, (D.24)

we can rewrite

ρaa ≈ 1− |ρab|2 (D.25)

and

ρbb ≈ |ρab|2 . (D.26)

Finally, we note that plugging in the approximate value of θ (Equation D.14) and recalling that

B = |B|jφ, we can rewrite the coherence for a weakly coupled system.

ρab ≈
θ

2
ejφ

=
1

2

2 |B|
A−D + 2∆ω

ejφ

=
B

A−D + 2∆ω
(D.27)
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Appendix E: Cavity and Chamber Diagrams

This appendix has more detailed images of our high-finesse cavity and the surrounding vacuum

chamber. The first image below is exactly Figure 6.7, which is reproduced here for reference. The

second image is the same view of the cavity and chamber with additional parts labeled.

Figure E.1 Cavity Diagram This custom-designed 75-cm-long stainless-steel vacuum chamber
houses the high-finesse cavity used in our experiment. (The drawing is to scale). The central
cavity contains the cavity mirrors and the molecular gas. Surrounding the cavity there is an

insulated 45-cm-long liquid nitrogen reservoir. (The insulation is not shown.) The end clamps
hold the end pieces in place, maintaining the vacuum, while the end pieces themselves hold the

cavity mirrors and anti-reflection-coated chamber windows. One of the end pieces also houses the
piezoelectric transducer (PZT) that allows for slight adjustments of the cavity length. We align

the cavity mirrors by making slight adjustments to the six end-clamp-tightening bolts. This allows
us to change the pitch of the mirrors while maintaining a vacuum seal. Not shown are the three

dial indicators per end piece that record its pitch.
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Figure E.2 Full View This view shows all of the pieces to the cavity and chamber. The table
below lists all parts seen in the figure at the bottom of the page.

1 Outer End Clamp 12 PZT Feedthrough Input 23 Chamber Base

2 Chamber Window O-Rings 13 Inner End Clamp Top 24 Liquid Nitrogen Reservoir

3 End Piece with Mirror Holder 14 End Piece O-Ring 25 Chamber Base

4 Retaining Ring 15 Cavity Mirror 26 Main Cavity Tube

5 End Piece O-Ring 16 Piezoelectric Transducer Stack 27 Inner End Clamp Bottom

6 Inner End Clamp Top 17 Chamber Window 28 Retaining Ring

7 Gas Input 18 Chamber Window Cover 29 Mirror Holder

8 Chamber Base Clamp 19 Chamber Window Cover 30 End Piece

9 Nitrogen Input 20 Chamber Window 31 Chamber Window O-Rings

10 Nitrogen Vent 21 Cavity Mirror 32 Outer End Clamp

11 Chamber Base Clamp 22 Inner End Clamp Bottom
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Figure E.3 PZT Side Detail This figure illustrates the PZT side of the cavity and chamber, both
without and with labels. The text below explains the labels.

This figure shows a closer view of the PZT side of the cavity chamber. The main cavity chamber

(A) is supported by the chamber base (B), which is attaches to the optical table, and the chamber

base clamp (C). The chamber is held so the optics are 3 inches above the optical table. The central

45 cm of the 75-cm-long cavity is surrounded by a liquid nitrogen reservoir (D) that includes a

nitrogen input / vent (E) for adding liquid nitrogen and allowing the boiled nitrogen gas to escape.

The reservoir holds roughly 5 L of liquid nitrogen. To keep the chamber at a relatively steady

temperature, and thus a relatively steady molecular density, we refill the nitrogen approximately

every thirty minutes while running the experiment. The cavity mirror (F) is held by the retaining

ring (G) and the mirror holder (H), which is attached to the PZT stack (I). The PZT stack expands

and contracts depending on the voltage applied to it through a conductor (not shown) that comes

through the PZT feedthrough input (J) through a Kwik-Flange (KF25) vacuum flange. This allows

for slight adjustments in the cavity length. The PZT stack is epoxied to the end piece (K). The

end piece Viton o-ring (L) holds the vacuum seal of the chamber between the end piece and the

main chamber. Although it is a standard Kwik-Flange vacuum flange (KF50), the end piece is

attached using a custom end clamp (M, N, and O). The inner end clamps (M, N) mate with the

outer flange of the cavity, then are attached to one another. The outer end clamp (O) mates with

the end piece and holds it in place when it is attached to the inner clamp. The custom end clamps

are necessary because they provide pitch control of the cavity mirrors. The six bolts that hold the

inner and outer parts of the end clamp together can be adjusted to slightly change the pitch of the



206

end piece (and therefore of the mirror) while still maintaining a vacuum seal. The inner end clamp

is attached to the table through a base (P), which gives a stable reference point and makes the end

clamp adjustments more repeatable. Not shown are the three dial indicators that are attached to the

inner end clamp. The indicators reach from the inner end clamp to rest on the outer end clamp.

The tips of these three indicators define a plane that indicates the pitch of the mirror. This can

be used as a reference to make pitch adjustments more systematic and repeatable. The end piece

houses the chamber window (Q), which, together with the chamber window Viton o-rings (R) and

the chamber window cover (S), seals the vacuum. The cavity window has anti-reflective coating

for near the pump and the Stokes wavelengths. It is also mounted at an angle of 3◦ relative to the

optical axis in order to avoid back-reflection and etalon effects.

Figure E.4 PZT Back Side Detail This figure illustrates the reverse of the PZT side of the cavity
and chamber. This view shows where some of dial indicators are held in the inner clamp by set

screws (A) and also some of the indentations in the outer clamp on which the dial indicators rest
(B). Also visible are the slots in the back of the inner end clamp (C). These slots hold the nuts so
that the end-clamp-tightening bolts can be easily tightened from the front of the outer end clamp.
This diagram angle also gives a better view of the retaining ring (D) that holds the cavity mirror

(E) in place by screwing into the threaded inner surface of the mirror holder (F). Barely visible is
a small hole (G) that connects the main chamber with the small volume of empty space between

the mirror and the chamber window. This is to help ensure that this part of the chamber is
properly evacuated by the vacuum pump.
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Figure E.5 Non-PZT Side Detail This figure illustrates the side of the cavity and chamber
opposite the one shown in Figure E.3. Almost all features are identical. The main difference is

that there is no PZT stack to adjust this mirror. The mirror holder is included as a part of the end
piece (A). Also, instead of a PZT feedthrough, this side has the gas input (B). This is the

connection (a KF16 vacuum flange) where the vacuum pump is connected to evacuate the
chamber. Through this same connection, the molecular gas is added. Not shown is the manometer
used to gauge the gas pressure in the cavity. The figure below shows the reverse view of this side
of the cavity. Again visible is the end piece that includes the mirror holder (C), including the small
hole (D) for evacuating the area between the window and the mirror, as mentioned in Figure E.4.

Figure E.6 Non-PZT Back Side Detail
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Appendix F: Transition Frequency Calculations

This appendix outlines the calculations of the frequencies in Table 6.1. These calculations are

based on Chapter III of Spectra of Diatomic Molecules by Herzberg [65]. The values of constants

come from Table 39 in the appendix of Herzberg.

By modeling a diatomic molecule as a quantum oscillator, we can describe its vibrational and

rotational motion and calculate its quantized energy. The energy in wavenumbers, ν̃, of the molec-

ular states is approximated by the following expression:

ν̃(v, J) ≈ ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2

+BvJ (J + 1)−DvJ
2 (J + 1)2 . (F.1)

(In this expression we have dropped higher-order terms in
(
v + 1

2

)
and (J + 1). Higher-order

terms can be found in Herzberg.)

v and J are the quantum numbers of vibration and rotation, respectively. ωe is a constant

term that is based on modeling the molecule as a classical anharmonic oscillator oscillating with

infinitesimal amplitude. ωexe is a constant term that indicates by how much ωe deviates from

the corresponding classical frequency. Both terms are given in Table F.1 for both deuterium and

hydrogen.

Molecule ωe ωexe Be αe

D2 3118.4 64.09 30.429 1.0492

H2 4395.2 117.99 60.800 2.993

Table F.1 Deuterium and Hydrogen Constants This table presents the values of the constants
needed to calculate the energies of the molecular states as detailed above. All values are for the
ground electronic state, and units for all entries are wavenumbers (cm−1). All values are from

Table 39 of the appendix of Herzberg [65].

Bv is a rotational constant; it is the mean value of a rotational constant for a molecule vibrating

(and thus changing its rotational constant) in the vth vibrational state. Given a quantum number v,
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Bv can be calculated using the following expression:

Bv ≈ Be − αe
(
v +

1

2

)
. (F.2)

The approximation indicates that we have ignored higher-order terms in
(
v + 1

2

)
. Be is the

rotational constant of the molecule in its equilibrium orientation, and αe is a constant that quantifies

the small deviation in the rotational constant that occurs due to the changing internuclear spacing

of a vibrating molecule. Both Be and αe can be found in Table F.1. Dv is the mean rotational

constant of the molecule. It includes the effects of inertia on a rotating object, and it depends on

the vibrational frequency of the molecule. As with Bv, Dv can be calculated given v.

Dv ≈ De + βe

(
v +

1

2

)
(F.3)

The approximation again indicates that we have ignored higher-order terms in
(
v + 1

2

)
. De

is the rotational constant of the equilibrium, vibrationless state. This can be calculated using the

following equation:

De =
4B3

e

ω2
e

. (F.4)

βe is related to the deviation of the rotational constant of a vibrating molecule from that of a

vibrationless state. βe can be calculated in terms of previously defined constants.

βe = De

(
8ωexe
ωe

− 5αe
Be

− α2
eωe

24B3
e

)
(F.5)

To calculate the frequency values in Table 6.1, the energies of the ro-vibrational levels of inter-

est were first calculated using Equation F.1. These energies in wavenumbers, ν̃, were multiplied

by the speed of light, c, to convert to frequencies, ν.

ν = ν̃c (F.6)

Several frequency differences are displayed in Tables F.2 and F.3 for deuterium and hydrogen,

respectively. The frequency differences that are most relevant for our experiment are recorded in

Table 6.1.
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D2 v = 0 v = 1 v = 2

J = 0 0 89.6 175.5

J = 1 1.8 91.4 177.1

J = 2 5.4 94.8 180.4

J = 3 10.7 100.0 185.4

J = 4 17.8 106.8 192.0

J = 5 26.6 115.3 200.2

Table F.2 Deuterium Frequency Separation from the Ground State This table presents the
frequency spacing in THz between molecular energy levels in deuterium and the ground state,
|v = 0, J = 0〉. The row indicates the rotational quantum number, J , and the column indicates the

vibrational quantum number, v.

H2 v = 0 v = 1 v = 2

J = 0 0 124.7 242.3

J = 1 3.6 128.1 245.5

J = 2 10.6 134.8 251.9

J = 3 21.1 144.8 261.3

J = 4 35.0 158.0 273.8

J = 5 52.1 174.2 289.1

Table F.3 Hydrogen Frequency Separation from the Ground State This table presents the
frequency spacing in THz between molecular energy levels in hydrogen and the ground state,
|v = 0, J = 0〉. The row indicates the rotational quantum number, J , and the column indicates the

vibrational quantum number, v.


