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Abstract

Between April and September of 2016 we did several variations of a standing wave experiment in an attempt
to verify the magnetic-dipole nature of the 7F0 → 5D1 transition of Eu3+:Y2SiO5. Eventually it became apparent
that a different method would be needed. This lead us to explore the anisotropy of our crystal to carry out the
verification. This proved to be an effective method.

1 Prologue

As described in [1], our previous attempts to verify the magnetic dipole nature of the 7F0 → 5D1 transition (simply
referred to as the transition or our transition from now on) of Eu3+:Y2SiO5 (YSO). This proved to be a fruitless
endevour. The reasons for this and the reasons we want to demonstrate the magnetic-diopole nature of our transition
can be found in the writeup on those efforts [1].

2 Introduction

The idea behind this experiment is simple; exploit the anisotropic response of the crystal to determine which field is
producing the fluorescence. To get a more intuitive view of this, one can use the classical picture that the europium
ions are tiny dipole antennas. The classical radiation pattern of a dipole is a donut shape where the donut is coaxial
with the dipole. This donut also represents the directional sensitivity of the dipole. In other words, the dipole is
most responsive to electromagnetic waves which are polarized parallel to the dipole.

Due to the crystalline nature of our crystal, these dipoles are all oriented roughly the same way with respect to
the crystalographic and optical axes. Now, imagine that we send in light with the electric field polarized along one
of the optical axes, let’s say the D1 axis. If we were to then rotate the crystal around this axis, the orientation of the
electric field in the crystal would not change. Now let’s assume, just as an example, that the dipoles are all aligned
with the D2 axis. As we rotate the crystal around the D1 axis and electric field, the magnetic field’s orientation
changes. Since the dipoles are aligned perpendicularly to the axis of rotation, the magnetic field’s alignment will
alternate between being perpendicular and parallel (or antiparallel) to the dipoles. Thus, if the magnetic field does
indeed interact with the europium, we would expect the intensity of the fluorescence to change as we rotate the
crystal. The same experiment can be done with the magnetic field aligned with the D1 axis. As we rotate the crystal
in this situation and if the electric field does not interact with the europium, we would expect no change to the
intensity of the fluorescence, disregarding the effects of reflections and transmissions.

3 Experimental Setup and Procedure

The Experimental setup can be seen in Figure 1. To carry out the measurement described in the introduction, we
needed a way to accurately rotate the crystal. To do this we put the crystal in a Gimbal mount. The starting
position was such that both of the mount’s axes of rotation were parallel to the table. The crystal was arranged such
that the starting direction of the axes were normal to four of the crystal’s faces. The laser was a 527 nm linearly
polarized beam generated by an SHG cavity (not shown in Figure 1. The polarization state of the laser was selected
with a half-wave plate. The laser, in eithher the S or P polarization state, was then directed along one of these axes
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Figure 1: The Experimental setup. The crystal is mounted in a Gimbal mount with an axis of rotation parallel to
the page. The Laser beam is coming roughly out of the page. The filter we used was a red transmission filter with
a cutoff low enough to transmit the fluorescence. The photodiode was a Thorlabs PDA36A (CHECK THIS).

and perpendicularly to the other. The crystal was then incrementally rotated along the axes that was perpendicular
to the beam. The fluorescence was collected with a high NA lens and focused onto our Newport power meter after
going through a filter to remove any green light. The power in the fluorescence was measured as the crystal was
incrementally rotated around the axis that was perpendicular to the laser. This procedure was repeated for each
polarization state incident on each of the three axes of the crystal.

4 Data Analysis and Results

We want to be able to compare the fluorescence between the different polarization states as a function of incidence
angle. To do so we need to account for the other factors that could be causing a change in the amount of fluorescence.
There are two such factors that influence the amount of fluorescence collected onto the power meter, and they both
depend on the angle at which the beam enters the crystal. The first factor is that the beam’s pathlength in the
crystal will change as the angle of incidence is changed, and it is the same for both polarization states. This can be
accounted for by multiplying each measurement by cos θi

1. The other factor is, which does depend on the polarization
state, is the change in laser power in the crystal from reflections and transmissions.

Before we continue, it is important to note that there are two assumptions made in the following analysis. One is
that, dispite the anisotropy of the crystal, we assume that the index of refraction is the same in all directions. This
is not strictly true, but the small difference in index between the different directions is small and does not have much
of an impact here. The other assumption is that the absorption of the green beam in the crystal is negligible. To be
more precise, we assume that the main source of attenuation of the beam in the crystal is transmissions through the
faces.

The Fresnel coefficients of power reflection and transmission for a beam propagating in a material with index
of refraction n1 and permeability µ1 towards an interface with a material with index n2 and permeability µ2 at an

1The actual pathlength is L/ cos θi. L is the length the beam travels through the crystal at normal incidence and θi is the angle of
incidence (measured from the normal of course).
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angle of θ with the normal of the interface are given by
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We assume that both materials (air and our crystal in this case) have negligible magnetic susceptiblities so that their
permeabilities, µ1 and µ2, are equal to the permeability of free space2.

When the beam initially hits the crystal, it undergoes a power reduction via a transmission. The beam then
undergoes numerous reflections in the crystal, bouncing between the two opposing faces, and undergoing a power
reduction on each reflection. Since the crystal faces are not high-reflectivity mirrors, the total beam power in the
beam is dominated by the first few reflections, which is in compliance with our earlier assumption that the main
source of power loss in the crystal is through the interface. Because of this, we can approximate the sum of each
reflected beam with a geometric series. Thus the total beam power in the crystal is

Ptotal = T (θi)(1 +R(θr) +R2(θr) + ...)Pincident =
T (θi)

1−R(θr)
Pincident (2)

where θi is the angle of incidence at the air-crystal interface and θr is the angle of incidence at all of the crystal-air
interfaces (related to θi by Snell’s law).

To normalize the data, we make the assumption that the power measured by the powermeter is proportional to
the amount of fluorescence which is itself proportional to the power of the beam in the crystal. We then multiply
our data by cos(θr), to acount for the change of pathlength in the crystal, and divide by the coefficient in equation
2. The data is further normalized by dividing each set of data with a given polarization and propagation orientation
by the normalized power at normal incidence. The results of this normalization canbe seen inf Figures 2 - 4. Figures
2 and 3 clearly show a response from changing the orientation of the magnetic field but not the orientation of the
electric field. Figure 4 was a little more messy. Since the beam was propagating along the long axis there was a
much smaller window of angles in which we could send in the beam without hitting the sides of the crystal. Even
for those low angles that the incident beam did not hit any sides, some of the reflected beams did. For this reason,
these plots are not quite as conclusive as Figures 2 and 3.
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5 Notes

� The detector was the newport power meter, not a photodiode.

� What power did I use?

� What not to do.

� Which axis is which?

2Although the main point of our Rabi flopping experiment in [2] was to demonstrate a deviation from the permeability of free space
in YSO, the power of the laser in this experiment is much lower. Therefore the deviation is much smaller and, thus, negligible.
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Figure 2: Fluorescence while rotating around the 10 mm axis. In the top plot the beam is propagating along the
4mm axis. In the bottom plot the beam is propagating alog the 5 mm axis. These plots clearly show that the
fluorescence responds to the orientation of the magnetic field and not the electric field.
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Figure 3: The top plot shows propagation along the 5mm axis and roation around the 4 mm axis. The bottom
plot shows propagation along the 4 mm axis and rotation around the 5 mm axis. These plots also clearly show the
dependence on the magnetic field.
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Figure 4: Fuorescence while propagating along the 10 mm axis. In the top plot the crystal is being rotated around
the 5 mm axis. In the bottom plot the crystal is being rotated around the 4 mm axis. These plots are less conclusive
than Figure 2. This is because of the length of the crystal. Due to propagating along the long axis of the crystal, we
could only use smaller angles before the incident beam hit an edge of the crystal. Even though the incident beam
was not hitting an edge, reflected beams were more likely to hit an edge as well.
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