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Abstract
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1. Introduction

One of the central questions in physical science is the extent to which the future is determined
by the present. Quantum mechanics, although a probabilistic theory, gives a deterministic
answer to this question: the wavefunction of an isolated system at present completely
determines the system wavefunction in the future. This is basically due to the fact that the
Schrödinger equation is a first order differential equation in the time variable.

Thus, in order to predict future probabilities, all we need to do is to numerically
solve the time dependent Schrödinger equation from the present to the future. Assuming that
the integration of the Schrödinger equation is possible, and hence, that given the present we
are able to predict future probabilities, a more ambitious question can then be asked: given an
initial wavefunction at present, what dynamics (e.g. the Hamiltonian) guarantees a particular,
desired outcome in the future? This question constitutes the essence of the field now called
quantum control [1, 2].

Developments over the past fifteen years make clear that such control is based on the
fundamental principle of coherent control (CC) [3–14], i.e. that control can be achieved by
manipulating quantum interferences that arise when the desired final state is reached through
a number of indistinguishable pathways. Such interferences can often be manipulated by
simply varying aspects of radiation incident on the system, as described in detail below. This
CC methodology is the subject of this review.

We note, for completeness, that obtaining maximal control to achieve a desired target may
well necessitate a means of tuning the system and the laser parameters to optimally achieve
the desired objective. This is the subject of optimal control, which is discussed elsewhere
[1, 2, 15–26].

2. Preliminaries

2.1. Photo-excitation of a molecule with a pulse of light

Consider a molecule interacting with a pulse of coherent light where the light is described in
terms of a purely classical electric field E(z, t) propagating along the z-axis:

E(z, t) = ε̂ε(z, t), (1)

where

ε(z, t) =
∫ ∞

−∞
dω ε(ω) exp

[
−iω

(
t − z

c

)]
(2)

is the strength of the field and ε̂ is the polarization direction vector. The quantity ω denotes
the frequency. The dynamics of the system is described by a time dependent Hamiltonian,
H(t) = HM + HMR, where HM is the (radiation free) material Hamiltonian and HMR is the
matter-radiation interaction, given in the dipole approximation as

HMR = −d · E(z, t). (3)

The dynamics of the radiation-free molecule is fully described by the (discrete or continuous)
set of energy eigenvalues and eigenfunctions, denoted, respectively, as En and |En〉, of the
material Hamiltonian HM :

HM |En〉 = En|En〉. (4)

Given En and |En〉, the full time dependent Schrödinger equation
ih̄∂|�(t)〉

∂t
= H |�(t)〉 (5)
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can be solved by expanding |�(t)〉 in terms of |En〉:

|�(t)〉 =
∑

n

bn(t)|En〉 exp

(
− iEnt

h̄

)
(6)

with the bn(t) coefficients given (using the orthonormality of the |En〉 basis functions), as the
solution of a set of first order differential equations:

dbm(t)

dt
=
(

1

ih̄

)∑
n

bn(t) exp(iωm,nt)〈Em|HMR(t)|En〉. (7)

Here, ωm,n ≡ (Em − En)/h̄.

Consider first the case where the molecule is initially (t = −∞) in a single state |E1〉, i.e.
where

b1(t = −∞) = 1 and bk(t = −∞) = 0 for k �= 1. (8)

Formally integrating equation (7), while neglecting all coefficients on the right-hand side save
for b1(t), we obtain that,

bm(t) =
∫ t

−∞
b1(t) exp(iωm,1t)〈Em|HMR(t)|E1〉. (9)

If the perturbation is weak we can also assume that b1(t) = 1 at all times, to obtain that,

bm(t) = − dm,1

ih̄

∫ t

−∞
dt ′ exp[iωm,1t

′]ε(z, t ′)

= − dm,1

ih̄

∫ ∞

−∞
dω ε̄(ω)

∫ t

−∞
dt ′ exp[i(ωm,1 − ω)t ′], (10)

where

dm,1 ≡ 〈Em|ε̂ · d|E1〉 and ε̄(ω) ≡ ε(ω) exp

[
iωz

c

]
. (11)

Here, ε̂ · d is the projection of the transition-dipole operator along the electric field direction.
Equation (10) provides the expansion coefficients at any time t . If our interest is in

observing or controlling the final product states (as it is in photodissociation) then we only
require the wavefunction �(t) as t → +∞. In this limit, we can insert the equality∫ ∞

−∞
dt ′ exp[i(ωm,1 − ω)t ′] = 2πδ(ωm,1 − ω) (12)

into equation (10) to obtain

bm(+∞) = 2π i

h̄
ε̄(ωm,1)dm,1 = 2π i

h̄
|ε(ωm,1)|dm,1 exp

[
i
(
φ(ωm,1) +

ωm,1z

c

)]
, (13)

where φ is defined as the phase of ε(ω), i.e., ε(ω) = |ε(ω)| exp(iφ(ω)).
Equation (13) clearly shows that in preparing the state |Em〉, the light field has imparted

both a magnitude as well as a phase to �(t).

2.2. Photodissociation

Photodissociation results when the energy eigenstates reached by photon absorption are in the
continuum. When the spectrum is continuous we have to use the scattering wavefunctions as
the states of matter. These are defined as eigenstates |E, m〉 of the material Hamiltonian with
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continuous energy eigenvalues E, i.e.

[E − HM ]|E, m〉 = 0 (14)

with normalization chosen as

〈E′, m|E, n〉 = δ(E − E′)δm,n. (15)

The index m designates a collection of additional quantum numbers that may be necessary
to completely specify the state. In particular, if we regard the state |E, m〉 as representing
a collisional or a dissociation process, then m includes the chemical identity as well as all
the internal (electronic, vibrational, rotational, etc) quantum numbers of the molecules that
participate in the collision, before (or after) the event (see, e.g. [27]).

Using equations (6) and (13), it is evident that after the pulse is over the portion of the
wavepacket excited to a continuous segment of the spectrum is given by

|� ′(t)〉 =
(

2π i

h̄

)∑
n

∫
dE ε̄(ωE,1)〈E, n|ε̂ · d|E1〉|E, n〉 exp

(
− iEt

h̄

)
. (16)

Consider then the long-time properties of equation (16). In order to do so we need to relate
the eigenstates of HM to the eigenstates that describe the freely moving fragments at the end
of the process. We take as an example a triatomic molecule ABC, which fragments at the end
of the process to yield, say, the A + BC channel. Factorizing out the ABC centre-of-mass
motion, we partition the remaining part of HM into three parts

HM = KR + Kr + W(R, r). (17)

Here, R is the radius vector separating A and the BC centre-of-mass, r is the B −C separation;
W(R, r) is the total potential energy of A, B and C, and

KR = −h̄2

2µ
∇2

R, (18)

Kr = −h̄2

2m
∇2

r (19)

are the kinetic energy operators in the R and r variables, with µ and m being the reduced
masses,

µ = mA(mB + mC)

(mA + mB + mC)
, m = mBmC

(mB + mC)
. (20)

Denoting by v(r) the asymptotic limit of W(R, r) as A separates from B − C,

v(r) = lim
R→∞

W(R, r), (21)

it is clear that the A − BC interaction potential, defined by

V (R, r) ≡ W(R, r) − v(r) (22)

vanishes as R → ∞,

lim
R→∞

V (R, r) = 0. (23)
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Defining the B − C Hamiltonian as

hr ≡ Kr + v(r), (24)

the triatomic Hamiltonian of equation (17) can now be divided, using equation (22), into three
parts,

HM = KR + hr + V (R, r). (25)

In the absence of the interaction potential V (R, r) the two free fragments A and BC

described by the free Hamiltonian

H0 ≡ KR + hr (26)

move independently of one another. The eigenstates of H0, |E, n; 0〉, satisfying

[E − H0]|E, n; 0〉 = 0 (27)

are given as products

|E, n; 0〉 = |en〉|E − en〉. (28)

Here, |en〉, the internal states, satisfy the eigenvalue relation,

[en − hr]|en〉 = 0 (29)

with en being the internal (electronic, vibrational, rotational) energy of the B − C diatomic.
The |E − en〉 states, satisfying the eigenvalue relation,

[E − en − KR]|E − en〉 = 0, (30)

describe the free (translational) motion of A relative to BC.
The eigenstates |E, n〉 of the fully interacting Hamiltonian HM and associated boundary

conditions are related to |E, n; 0〉 via the Lippmann–Schwinger equations,

|E, n±〉 = |E, n; 0〉 + lim
ε→0

[E ± iε − H0]−1V |E, n±〉. (31)

The ‘plus’ solutions are called the outgoing scattering states, and the ‘minus’ solutions are
called the incoming scattering states, and relate to different boundary conditions, as shown
below.

We now use the Lippmann–Schwinger equation to explore the long-time behaviour of the
wavepacket �(t) created with the laser pulse. We can use either the outgoing or incoming
states as the basis set for expanding �(t). Substituting equation (31) in (16), we obtain that

|� ′(t)〉 =
(

2π i

h̄

)∑
n

∫
dE exp

(
− iEt

h̄

)
ε̄(ωE,1)〈E, n±|ε̂ · d|E1〉

× {|E, n; 0〉 + [E ± iε − H0]−1V |E, n±〉}. (32)

Using the spectral resolution of [E ± iε − H0]−1 we have from equation (32) that the
amplitude for finding a free state |E′, m; 0| at time t is given by

〈E′, m; 0|� ′(t)〉 =
(

2π i

h̄

)∑
n

∫
dE exp

(
− iEt

h̄

)
ε̄(ωE,1)〈E, n±|ε̂ · d|E1〉

× {〈E′m; 0|E, n; 0〉 + [E ± iε − E′]−1〈E′m; 0|V |E, n±〉} . (33)

Using the normalization of continuum states (equation (15)), we have that

〈E′, m; 0|� ′(t)〉= 2π i

h̄
exp

(
− iE′t

h̄

)
ε̄(ωE′,1)〈E′, m±|ε̂ · d|E1〉 +

2π i

h̄

∑
n

∫
dE exp

(
− iEt

h̄

)

×ε̄(ωE,1)〈E, n±|ε̂ · d|E1〉[E ± iε − E′]−1〈E′m; 0|V |E, n±〉. (34)
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In the t → ∞ limit the integration over E can be performed analytically by contour integration.
It is easy to show by supplementing the real-E integration by a semi-circle in the lower-
half complex E-plane, that when using the ‘−’ solutions the second term vanishes and we
obtain that,

lim
t→∞〈E′, m; 0|� ′(t)〉 =

(
2π i

h̄

)
ε̄(ωE′,1) exp

(
− iE′t

h̄

)
〈E′, m−|ε̂ · d|E1〉. (35)

Thus, the coefficients of expansion of the excited wavepacket in terms of the |E, m−〉 states,
yield directly the probability-amplitude of observing states |E, m; 0〉 in the distant future.
Hence, the ‘minus’ states are the natural basis functions to employ in photodissociation
problems.

This treatment assumes that the product comprises a single arrangement channel, i.e. the
formation of A + BC as the final product. The extension of this formalism to multiple product
arrangements, e.g. where A + BC and AB + C are products of ABC photodissociation, or
where A+BC collide to form A+BC and A+BC, requires: (a) the addition of a channel label
q = 1, 2, . . . to the descriptor of the state, so that |E, m, q; 0〉 corresponds to arrangement q;
and (b) rewriting equations (17)–(31) to partition the Hamiltonian in a fashion appropriate to
the final arrangement of interest. Thus, for example, for the AB + C arrangement, the vector
R defines the AB to C distance, r defines the A − B separation, etc.

The photodissociation probability into the state characterized by n at energy E, Pn(E|i),
when starting in state |Ei〉 is given by the square of An(E|i), the photodissociation amplitude
for observing the free state exp(−iEt/h̄)|E, n; 0〉 in the long-time limit. That is,

Pn(E|i) = |An(E|i)|2, (36)

with An(E|i) defined as

An(E|i) = lim
t→∞ exp

(
iEt

h̄

)
〈E, n; 0|�(t)〉. (37)

Because the bound and continuum wavefunctions usually belong to different electronic
manifolds, they are orthogonal to one another and the only term that contributes to An(E|i)
derives from � ′, the excited part of the wavepacket. It follows from the boundary conditions
on |E, n−〉 (equation (35)), that the t → ∞ limit of equation (32) can be written as

|� ′(t → ∞)〉 = 2π i

h̄

∑
n

∫
dE ε̄(ωE,i)|E, n; 0〉〈E, n−|de,g|Ei〉 exp

(
− iEt

h̄

)
, (38)

where de,g ≡ 〈e|ε̂ · d|g〉, with |g〉 and |e〉 being the ground and an excited electronic
state, respectively. Using the orthonormality of the |E, n; 0〉 functions, we obtain from
equation (37) that

An(E|i) = 2π i

h̄
ε̄(ωE,i)〈E, n−|de,g|Ei〉. (39)

Note that by using incoming states, we have shown that the coefficient of the state |E, n−〉
at time t = 0 in equation (38) is exactly An(E|i), the long-time photodissociation amplitude.
Thus, we obtain the crucial insight that the probability of obtaining product in the state |E, n; 0〉
is given solely by the probability of preparing the state |E, n−〉 at the time of preparation.

3. Weak-field CC

The traditional scenario of molecular excitation and subsequent system evolution whose theory
was developed in the preceding section, affords little opportunity to control the outcome
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of molecular events. In order to understand why this is so and how the problem may
be overcome [28] we note that even beyond the weak perturbation limit the probability of
dissociation into a particular product state at any given time is given as

Pm(E)(t) = |〈em|〈km|�(t)〉|2. (40)

Using the expansion of the wavepacket

|�(t)〉 = b1(t) exp

(−iE1t

h̄

)
|E1〉 +

∑
n

∫
dE bE,n(t) exp

(−iEt

h̄

)
|E, n−〉

we have that

〈em|〈km|�(t)〉 = b1(t)〈em|〈km|E1〉 exp

(
− iE1t

h̄

)

+
∑

n

∫
dE bE,n(t)〈em|〈km|E, n−〉 exp

(
− iEt

h̄

)
. (41)

Assuming that 〈em|E1〉 = 0, (e.g. the two-states belong to different electronic states), it follows
from equation (41) that in the long-time limit

Pm(E) = |〈em|〈km|�(t → ∞)〉|2 = |bE,m(t → ∞)|2. (42)

It follows from equation (9) extended to continuum states, and assuming that the light field is
in near-resonance with only the bound-free transition frequencies ωE,1, that

bE,n(t) = i

h̄
〈E, n−|ε̂ · d|E1〉

∫ t

−∞
dt ′ε(t ′) exp(−iωE,1t)b1(t

′). (43)

Hence,

Pn(E)

Pm(E)
=
∣∣∣∣ bE,n(∞)

bE,m(∞)

∣∣∣∣
2

=
∣∣∣∣ 〈E, n−|ε̂ · d|E1〉
〈E, m−|ε̂ · d|E1〉

∣∣∣∣
2

. (44)

Thus, the branching ratios at a fixed energy E, control over which is generally sought, are
independent of the external field(s). Hence, varying the parameters of the external field(s) will
have no effect on the asymptotic branching ratios. That is, there is no way we can control
the product ratios of the photodissociation event. This result, which coincides with that of
perturbation theory, holds true as long as there is only one initial-state |E1〉 that is excited to
the continuum.

The above argument motivates the idea that the way to control photodissociation is to use
more than one initial-state, or in greater generality, to use multiple excitation pathways. In this
section, we demonstrate that such a strategy allows us to actively influence and control which
photodissociation product is formed. These ideas, which introduce the notion of ‘CC’, will be
later shown to hold true for any dynamical process, not just for photodissociation.

3.1. Photodissociation from a superposition state

We introduce the basic principles of CC through a series of examples. In particular, we extend
the treatment of section 2.2 to the photodissociation of a non-stationary superposition of bound
states, |χ(0)| =∑N

j=1 aj |Ej 〉 exp(−iEj t/h̄). Numerous experimental techniques can be used
to create such a state. Whatever the method of preparation, the amplitude and phase of the
coefficients aj are functions of the experimentally controllable parameters used in creating the
superposition.

Repeating the treatment of weak-field photodissociation given in section 2.2, but
now for an initial superposition state, gives the same result as trivially replacing, in the
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final result (equation (16)), the single initial-state |E1〉 exp(−iE1t/h̄) by the superposition∑N
j=1 aj |Ej 〉 exp(−iEj t/h̄). Thus, at the end of the excitation pulse the system wavefunction

at time t is given by

|�(t)〉 =
N∑

j=1

aj |Ej 〉 exp

(
− iEj t

h̄

)
+

(
2π i

h̄

) N∑
j=1

aj

×
∑

n

∫
dE ε̄(ωE,j )〈E, n−|de,g|Ej 〉|E0, n−〉 exp

(
− iEt

h̄

)
, (45)

where ωE,j ≡ (E − Ej)/h̄. The probability Pn(E) of being in the final state |E, n; 0〉 is
Pn(E) = |An(E)|2, where the probability-amplitude An(E) is given by (using equations (15)
and (37)]

An(E) = lim
t→∞ exp

(
iEt

h̄

)
〈E, n; 0|�(t)〉 = 2π i

h̄

N∑
j=1

aj ε̄(ωE,j )〈E, n−|de,g|Ej 〉. (46)

Of particular interest is the probability of being in a complete subspace of states, denoted
by the label q; that is, in all states m associated with a fixed q, where n = (m, q). Summing
over m we obtain that,

Pq(E) =
∑

m

Pm,q(E) =
∑

m

|Am,q(E)|2. (47)

Inserting Am,q(E) from equation (46) gives

Pq(E) =
(

2π

h̄

)2 N∑
i,j=1

[aia
∗
j ε̄(ωE,i)ε̄

∗(ωE,j )]dq(j i), (48)

where

dq(j i) =
∑

m

〈Ej |dg,e|E, m, q−〉〈E, m, q−|de,g|Ei〉 (49)

and dg,e = d∗
e,g . The branching ratio between two channels at energy E, Rq,q ′(E), which we

control below is then,

Rq,q ′(E) = Pq(E)

Pq ′(E)
. (50)

Consider then the nature of Pq(E) (equation (48)). The diagonal terms (i = j ) give the
standard probability, at energy E, of photodissociation out of a bound state |Ej 〉 to produce
a product in channel q. The off-diagonal terms (i �= j ) correspond to interference terms
between these photodissociation routes. These interference terms describe the constructive
enhancement, or destructive cancellation, of product formation in subspace q. Equation (48)
is important in practice because the interference terms have coefficients [aia

∗
j ε̄(ωE,i)ε̄

∗(ωE,j )]
whose magnitude and sign depend upon experimentally controllable parameters. Thus, the
experimentalist can manipulate laboratory parameters and, in doing so, alter the interference
term and hence control the reaction product yield. This control scenario can also be extended
to the domain of moderately strong fields [29].

Equation (48) displays an important feature. That is, the entire control map, i.e. Pq(E) or
Rq,q ′(E) as a function of the control parameters, is a function of very few molecular parameters,
i.e. the dq(j i). As a consequence, the experimentalist need only determine these few parameters
in order to produce the entire control map. This statement constitutes the weak-field version
of ‘Adaptive Feedback Control’ [30–35]. In the general strong field regime, a numerical non-
linear search procedure must be performed to achieve a desired optimization. However, in the
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weak-field regime, because of the simple bilinear dependence of each Pq(E) on the aj ε̄(ωE,j )

experimental parameters, we need only carry out q × N2 measurements to determine all
the dq(j i) coefficients. Once these coefficients are known, the bilinear Pq(E) function can
be analytically interpolated to give any desired branching ratio between, and including, the
extrema of Rq,q ′(E).

3.2. Bichromatic control

Experimentally attaining control via equation (48) requires a light source containing N

frequencies ωi, (i = 1, . . . , N). Both pulsed excitation with a source whose frequency width
encompasses these frequencies, as well as excitation with N continuous wave (cw) lasers of
frequencies ωi = ωE,i , (i = 1 . . . N) are possible approaches, as depicted in figure 1. Here,
we focus on N = 2, i.e. the effect of two cw lasers on a system in a superposition of two-states
(figure 1(c)), a scenario that we call ‘bichromatic control’.

Consider then two parallel cw fields of frequencies ω1 and ω2 incident on a molecule. The
light–molecule interaction potential (equation (3)) is then

HMR(t) = −
2∑

i=1

2d · ε̂Re[ε̄(ωi) exp(−iωit)]. (51)

Tuning the ω1 and ω2 frequencies such that, ω2 − ω1 = (E1 − E2)/h̄, we have that Pq(E) of
equation (48), at energy E = E1 + h̄ω1 = E2 + h̄ω2, has only two contributions, corresponding
to the excitations shown in figure 1(c). The quantities Pq(E = E1 + h̄ω1) and Rq,q ′(E) are
therefore given by [3, 7, 12–14](

h̄

2π

)2

Pq(E = E1 + h̄ω1) = |a1|2|ε̄(ω1)|2dq(11)

+|a2|2|ε̄(ω2)|2dq(22) + 2Re[a1a
∗
2 ε̄(ω1)ε̄

∗(ω2)dq(12)], (52)

Rq,q ′(E) = |dq(11)| + x2|dq(22)| + 2x cos(θ1 − θ2 + αq(12))|dq(12)|
|dq ′(11)| + x2|dq ′(22)| + 2x cos(θ1 − θ2 + αq ′(12))|dq ′(12)| , (53)

Figure 1. Photodissociation of a superposition of N levels using (a) a pulsed light source (N = 3
is shown); (b) N cw lasers (N = 3 is shown), and (c) N = 2 with two cw lasers.
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where αq(ij) and θj are defined via

dq(ij) = |dq(ij)| exp(iαq(ij)), x = |ε̄(ω2)a2|
|ε̄(ω1)a1| ,

tan θj = Im[ε̄(ωj )aj ]

Re[ε̄(ωj )aj ]
.

(54)

For convenience, we have introduced the control variables �θ = θ1 − θ2 and s =
x2/[x2 + 1]. The range 0 � s � 1 covers all possible values of relative laser intensities.
Varying �θ or s, changes the interference term and thus gives us control over the dissociation
probabilities. These changes may be accomplished either by varying the coefficients of
the initial superposition state, {aj }, or by changing the intensity and relative phases of the
dissociation lasers. Note, in particular, that varying �θ corresponds to just varying a phase.
The dependence of the yield on �θ hence emphasizes the quantum-interference-based nature
of the control.

As an example of this approach we consider control over the relative probability of forming
2P3/2 vs 2P1/2 atomic iodine, denoted I and I∗, in the dissociation of methyl iodide in the regime
of 266 nm,

CH3 + I∗(2P1/2) ← CH3I → CH3 + I(2P3/2). (55)

This reaction is an example of electronic branching of photodissociation products. The results
reported below are for a non-rotating two-dimensional model [36,37] in which the H3 centre-
of-mass, the C and the I atoms are assumed to lie on a straight line.

Typical results for the control of the I vs I∗ channel are shown in figure 2, as contour
plots of the yield of CH3 + I as a function of the control parameters. Two cases are shown:
photodissociation out of the two superposition states |χ(0)〉 = a1|E1〉 + a2|E2〉 (figure 2(a))
and |χ(0)〉 = a1|E1〉 + a3|E3〉 (figure 2(b)). Here, |E1〉 is the ground state and |E2〉 and |E3〉
correspond to states with one and two quanta of excitation in the C–I bond. The results show
a large range of possible control. For example, the yield changes in figure 2(b) from 30% to
70% as one varies s at small θ1 − θ2. In addition, a comparison of the two figures shows that
the topology of the control plot depends strongly on the states that comprise the superposition
state.

3.2.1. Energy averaging and satellite contributions. In general, experiments measure energy
averaged quantities such as

Pq =
∫

dE Pq(E), Rq,q ′ = Pq

Pq ′
, (56)

since products are not distinguished on the basis of total energy. As such, it is necessary to
compute photodissociation to all energies. For the case considered above, two-states irradiated
with two cw fields of frequencies ω1 and ω2, Pq(E) (equation (48)) is non-zero at three energies:
E = E1 + h̄ω1 = E2 + h̄ω2, E

′ = E1 + h̄ω2 and E′′ = E2 + h̄ω1.
The contribution from the first of these energies Pq(E = E1+h̄ω1) is given in equation (52)

and shown on the left-hand side of figure 3. The remaining contributions, shown on the right-
hand side of figure 3, are

Pq(E
′ = E1 + h̄ω2) =

(
2π

h̄

)2

|a1ε̄(ω2)|2dq(11),

Pq(E
′′ = E2 + h̄ω1) =

(
2π

h̄

)2

|a1ε̄(ω1)|2dq(22).

(57)
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(a)

(b)

Figure 2. Contour plot of the yield of CH3 + I from the photodissociation of CH3I from a
superposition of states at ω1 = 37 593.9 cm−1. (a) |χ(0)〉 = a1|E1〉 + a2|E2〉, (b) |χ(0)〉 =
a1|E1〉 + a3|E3〉. Taken from figure 1, [3].

Figure 3. Contributions for two levels photodissociated by two frequencies. The interference terms
correspond to total energy = E. The satellite terms correspond to total energies = E′ and E′′.
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Thus, the overall Pq for N = 2 is given by

Pq = Pq(E = E1 + h̄ω1) + Pq(E
′ = E1 + h̄ω2) + Pq(E

′′ = E2 + h̄ω1). (58)

The latter two terms correspond to traditional photodissociation terms without associated
interference contributions and provide uncontrollable photodissociation terms that we call
‘satellites’. In this, and all CC scenarios discussed below, it is important to attempt to reduce
the relative magnitude of the satellite terms in order to increase overall controllability.

We make the general observation that interference between terms of different energies
contain oscillatory exp[i(E1 − E2)t/h̄] terms that average out to zero with time. (This is
not to say that the oscillatory interference term cannot be put to good use. See, e.g. a
proposal for generating terahertz radiation [38] using such oscillatory terms and a related
experiment [39]).

4. The principle of CC and ‘mode-selective chemistry’

Control of the type discussed above, in which quantum interference effects are used to
constructively or destructively alter product properties, is called coherent control (CC).
Photodissociation of a superposition state, the scenario described above, will be seen to be
just one particular implementation of a general principle of CC: i.e. that coherently driving
a state with phase coherence through multiple, coherent, indistinguishable, optical excitation
routes to the same final state allows for the possibility of control. This procedure has a well-
known analogy, the interference between paths as a beam of either particles or of light passes
through a double slit. In that case interference between two coherent beams leads to spatial
patterns of enhanced or reduced probabilities on an observation screen. In the case of CC the
overall coherence of a pure state plus laser source allows for the constructive or destructive
manipulation of probabilities in product channels. Active control results because the excitation
process explicitly imparts experimentally controllable phase and amplitude information to the
molecule.

As mentioned above, in general control can only arise from energetically degenerate
states. Another way of seeing this is to note that products of states of different energies E

and E′ appearing in the square of the wavepacket of equation (45) cannot contribute to any
measurement where the total energy is resolved. Such a measurement, which filters out all
the wavepacket components save those belonging to a given value of E, eliminates all the
E �= E′ products. Alternatively, we note that two-states of different energy are in principle
distinguishable. Hence, they cannot interfere with one another.

Numerous other scenarios can be designed that rely upon the essential CC principle.
Several are discussed in the following sections.

We note that there is an alternative approach to the control of chemical reactions, called
‘mode-selective chemistry’, which does not rely upon quantum interferences. When applied
to photodissociation, this approach would entail attempting to excite specific bonds in the
molecule (e.g. the A–B bond in the A–B–C molecule) in order to produce a specific product
(e.g. the A + B − C product in the given example). Mode-selective chemistry, though very
useful under favourable circumstances ([40–46], see [47] for a review), is of limited scope,
because in most cases the chemical bond we wish to excite is strongly coupled to other bonds
(i.e. the ‘local mode’ corresponding to excitation of one bond is not an eigenstate of the
system Hamiltonian). As a consequence, most excitations result in the production of a highly
delocalized wavepacket that entails excitation of many bonds. This phenomenon, is called
intramolecular vibrational redistribution (IVR).
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5. Interference between N-photon and M-photon routes

Another important example of CC introduces the possibility of quantum interference arising
through competitive optical routes in the excitation of a single bound state to an energy E.
Specifically, we consider the photodissociation of a single state via two pathways, an N -photon
and an M-photon dissociation route. The N vs M scenarios are of two types, N and M

of the same parity (i.e. both N and M odd or both even) or of opposite parity. The latter
allows for control over the differential photodissociation cross-sections (i.e. scattering into
different angles), or control of the integral cross-sections of systems lacking an inversion centre
(‘chiral’ systems), whereas the former allows for control over both the integral and differential
cross-sections. For simplicity, we focus on the two lowest order cases (N, M) = (1, 2) and
(N, M) = (1, 3).

5.1. One vs three-photon interference

Consider [48] a molecule initially in state |Ei〉 subjected to two co-propagating cw fields of
frequencies ω1 and ω3, with ω3 = 3ω1. The interaction potential is given by

HMR(t) = −2d · Re[ε̂3ε̄3 exp(−iω3t) + ε̂1ε̄1 exp(−iω1t)], (59)

where ε̄i ≡ ε̄(ωi).
We assume the following physics: (a) the dipole transitions within electronic states are

negligible compared to those between electronic states; (b) the fields are sufficiently weak to
allow the use of perturbation theory, and (c) Ei +2h̄ω1 is below the dissociation threshold, with
dissociation occurring from the excited electronic state. The lowest order perturbation theory
expression for the one-photon or three-photon dissociation amplitude Am,q(E = Ei + h̄ω3) is

Am,q(E = Ei + h̄ω3) =
(

2π i

h̄

)
[δ(ω3 − ωE,i)ε̄3〈E, m, q−|de,g|Ei〉

+δ(3ω1 − ωE,i)ε̄
3
1〈E, m, q−|Te,g|Ei〉], (60)

where, Te,g is the three-photon transition operator, given in third order perturbation theory as

Te,g =
∑
e′e′′

de,e′(Ei − He′ + 2h̄ω1)
−1de′,e′′(Ei − He′′ + h̄ω1)

−1de′′,g. (61)

The probability to produce fragments q at a fixed energy E is therefore

Pq(E) =
∑

m

|Am,q(Ei + h̄ω3)|2 = P (1)
q (E) + P (3)

q (E) + P (13)
q (E), (62)

where the one-photon photodissociation probability is

P (1)
q (E) =

(
2π

h̄

)2

|ε̄3|2
∑

m

|〈E, m, q−|de,g|Ei〉|2, (63)

the three-photon dissociation probability is

P (3)
q (E) =

(
2π

h̄

)2

|ε̄1|6
∑

m

|〈E, m, q−|Te,g|Ei〉|2 (64)

and the one-photon three-photon interference term is

P (13)
q (E) =

(
2π

h̄

)2
[
ε̄3ε̄

3
1

∑
m

〈Ei |Tg,e|E, m, q−〉〈E, m, q−|de,g|Ei〉 + c.c.

]
, (65)

where c.c. designates the complex conjugate.
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As in our discussion of the photodissociation of a superposition state (section 3.1) we
define a ‘molecular’ interference-amplitude |F (13)

q | and a ‘molecular’ phase αq(13) as

|F (13)
q | exp[iαq(13)] =

∑
m

〈Ei |Tg,e|E, m, q−〉〈E, m, q−|de,g|Ei〉. (66)

Recognizing that ε̄i is a complex number, ε̄i = |ε̄i |eiφi we can write the above interference
term as

P (13)
q (E) = −2

(
2π

h̄

)2

|ε̄3ε̄
3
1 | cos(φ3 − 3φ1 + αq(13)|F (13)

q |. (67)

The branching ratio Rqq ′(E) for channels q and q ′, (see equation (50)) can now be written as

Rqq ′(E) = F (11)
q − 2x cos[φ3 − 3φ1 + αq(13)]ε2

0 |F (13)
q | + x2ε4

0F
(33)
q

F
(11)
q ′ − 2x cos[φ3 − 3φ1 + αq ′(13)]ε2

0 |F (13)
q ′ | + x2ε4

0F
(33)
q ′

, (68)

where

F (11)
q =

(
h̄

π |ε̄3|
)2

P (1)
q (E), F (33)

q =
(

h̄

π |ε̄1|3
)2

P (3)
q (E), x = |ε̄1|3

ε2
0 |ε̄3|

, (69)

where ε0 is defined as a single unit of electric field; x is therefore a dimensionless parameter.
The numerator and denominator of equation (68) each display the canonical form for CC,

i.e. a form similar to equation (53) in which there are independent contributions from more
than one route, modulated by an interference term. Since the interference term is controllable
through variation of the (x and φ3 − 3φ1) laboratory parameters, so too is the branching ratio
Rqq ′(E). Thus, the principle upon which this control scenario is based is the same as that in
section 3.1 but the interference is introduced in an entirely different way.

The three-photon vs one-photon scenario has been experimentally realized by Elliott et al
in atoms [49], and by Gordon and co-workers [50–54] in a series of experiments on HCl
and CO. In the case of HCl, shown in figure 4, the molecule was excited to an intermediate
3
−(�+) vib-rotational resonance, using a combination of three ω1 (λ1 = 336 nm) photons
and one ω3 (λ3 = 112 nm) photon. The ω3 beam was generated from an ω1 beam by tripling in
a Kr gas cell. Ionization of the intermediate state takes place by absorption of one additional
ω1 photon. The relative phase of the light fields was varied by passing the ω1 and ω3 beams
through a second Ar or H2 (‘tuning’) gas cell of variable pressure.

The HCl experiments verified the predictions of CC theory concerning the sinusoidal
dependence of the ionization rates on the relative phase of the two exciting lasers.
The HCl experiment also verified the prediction of the dependence of the strength of
the sinusoidal modulation of the ionization current on the relative laser field intensities.
Similar demonstrations for ammonia, trimethylamine, triethylamine, cyclooctatetraene, and
1,1-dimethylhydrazine by Bersohn and co-workers [55] have been reported.

Gordon has also demonstrated [52] control of ionization in H2S, in a jet with a large
distribution of j -states. Although in this case both a dissociation and an ionization channel
are possible, i.e. H2S+ ← H2S → H + HS, no discrimination between the possible outcomes
of the photoexcitation has been observed: the signals of all final channels oscillate in phase as
the relative phase φ3 − 3φ1 is varied.

By contrast, in the HI+ ← HI→ H + I case, control over the production of different
channels, specifically the HI+ vs the H + I channels, has been observed [53, 54]. The
experimental results, shown in figure 5, are highly significant as, contrary to the H2S case, the
modulations in the I+ signal are seen to be out of phase with those of the HI+ signal. Thus,
control overdifferent reaction products has been demonstrated. That is, by changing φ3 − 3φ1,
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(a)

(b)

Figure 4. Ionization signal for the HCl R(2) transition as a function of pressure in the tuning cell,
using either (a) Ar or (b) H2 to control the relative phases of ω1 and ω3. Taken from figure 2, [50].

the phase difference between the ω3 and the ω1 laser fields, through the change in the pressure
of the H2 gas in the tuning cell, different I+/HI+ ratios are attained.

The quantitative nature of the observed control depends upon the values of F (13)
q and

the ‘molecular phase’, αq . In particular, the value of αq − αq ′ dictates the shift between the
peaks in Pq(E) and Pq ′(E). For example, a molecular case where αq − αq ′ ≈ 0 (e.g. in the
H2S+ ← H2S → H + HS case discussed above) shows less discrimination between channels
than does a molecular case where αq − αq ′ = π . Hence, the relationship between the nature
of the dynamics and the αq values is of interest, a topic studied in detail by Gordon et al [56].

A crucial aspect of these experiments is the requirement that the two co-propagating ω1

and ω3 beams satisfy the ‘phase-matching’ condition k3 = 3k1. As a result, equation (68) no
longer depends upon the spatial coordinate z and the interference term is independent of the
position in space.

The above results show that it is possible to control the integral cross-section into channel
q via one-photon vs three-photon absorption. A similar result obtains for any N -photon vs
M-photon absorption scenario where N and M are of the same parity. In addition, these
scenarios allow for control over differential cross-sections as well. To see this, consider
rewriting equations (63)–(66) so that it applies to the probability of observing the product in
channel q, but at a fixed scattering angle. Then the sum over the channel indices m no longer
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Figure 5. Modulation of the HI+ and I+ signals as a function of the difference between the one-
and three-photon phases (proportional to the H2 pressure in the cell used to phase shift the beams).
Taken from figure 3, [53].

includes an integral over scattering angles. The resultant cross term P (13) is non-zero so that
varying properties of the lasers will indeed alter the differential cross-section into channel q.

5.2. One vs two-photon interference: symmetry breaking

Although scenarios for interference between an N -photon route and an M-photon route,
where N, M are of the same parity, allow for control over both the differential and integral
photodissociation cross-sections, this is not the case when N and M are of different parity.
In this case, only control over the differential cross-section is possible. However, the control
is such that it leads to the breaking of the usual backward–forward symmetry. This is but
one example of the breaking of symmetry afforded via CC techniques. A more spectacular
example, that of chiral (asymmetric) synthesis, is presented in section 10.

In order to understand why control over the total cross-section is lost and how the
backward–forward symmetry is broken we analyse in some detail the simplest case in this
class, namely the interference between a one-photon and a two-photon absorption process [57].
Consider irradiating a molecule by a field composed of two modes, ω2 and ω1, with ω2 = 2ω1,
for which the light–matter interaction is

HMR(t) = −2d · Re[ε̂2ε̄2 exp(−iω2t) + ε̂1ε̄1 exp(−iω1t)]. (70)

The amplitude for the combined one-photon, two-photon absorption process is,

Aq,m(E = Ei + h̄ω2) =
(

2π i

h̄

)
δ(ω2 − ωE,i)[ε̄2〈E, m, q−|de,g|Ei〉

+ε̄2
1〈E, m, q−|De,g|Ei〉], (71)
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where De,g is the two-photon transition operator, defined as,

De,g =
∑
e′

de,e′(Ei − He′ + h̄ω1)
−1de′,g (72)

and we implicitly assume that Ei + h̄ω1 is below the threshold for photodissociation.
Suppressing for the moment all channel indices m (which can be readily included),

save for the final direction k̂, we square the amplitude to obtain Pq(E, k̂), the probability
of photodissociation into channel q at angles k̂ ≡ (θk, φk),

Pq(E, k̂) = |Aq(k̂, Ei + h̄ω2)|2 = P (1)
q (E, k̂) + P (12)

q (E, k̂) + P (2)
q (E, k̂), (73)

where

P (1)
q (E, k̂) =

(
2π

h̄

)2

|ε̄2|2|〈E, k̂, q−|de,g|Ei〉|2,

P (2)
q (E, k̂) =

(
2π

h̄

)2

|ε̄1|4|〈E, k̂, q−|De,g|Ei〉|2,

P (12)
q (E, k̂) = −2

(
2π

h̄

)2

|ε̄2ε̄
2
1 | cos[φ2 − 2φ1 + αq(12; k̂)]|F (12)

q (k̂)|

(74)

with the amplitude |F (12)
q (k̂)| and phase αq(12; k̂) defined by

|F (12)
q (k̂)| exp(iαq(12; k̂)) = 〈Ei |Dg,e|E, k̂, q−〉〈E, k̂, q−|de,g|Ei〉. (75)

The interference term P (12)
q (E, k̂) is generally non-zero, so that control over the differential

cross-section is possible. Consider, however, the integral cross-section into channel q, i.e.

Pq(E) =
∫

dk̂ Pq(E, k̂) (76)

and focus on the contribution from P (12)
q (E, k̂). That is, consider

P (12)
q (E) =

∫
dk̂|F (12)

q (k̂)| exp(iαq(12; k̂))

=
∫

dk̂〈Ei, Ji, Mi |Dg,e|E, k̂, q−〉〈E, k̂, q−|de,g|Ei, Ji, Mi〉, (77)

where we have explicitly inserted the angular momentum characteristics of the initial-state.
Using the definition of Dg,e and inserting unity in terms of the states |Ej , Jj , Mj 〉 of the
intermediate electronic states gives

P (12)
q (E) =

∑
j,e′

∫
dk̂[h̄ω1 + Ei − Ej ]−1〈Ei, Ji, Mi |dg,e′ |Ej , Jj , Mj 〉

× 〈Ej , Jj , Mj |de′,e|E, k̂, q−〉〈E, k̂, q−|de,g|Ei, Ji, Mi〉. (78)

For convenience, consider the case of diatomic dissociation. Examination of the selection rules
shows that when the transition-dipole operators de,g and de′,e are parallel to the nuclear axis, the
two-photon amplitude is non-zero only if Jj − Ji = ±2, 0. By contrast, in this case the one-
photon matrix element 〈Ei, Ji, Mi |dg,e′ |Ej , Jj , Mj 〉 is non-zero only if Jj − Ji = ±1. Since
these two conditions are contradictory, P 12

q (E) is zero. Hence, CC over integral cross-sections
is not possible using the one vs two-photon scenario.

This result holds true even when the transition-dipole operators are perpendicular to the
nuclear axis. Thus, lack of control over the integral cross-section in the 1 vs 2 scenario will
also occur in polyatomic molecules and for any N - vs M-photon process where N and M are
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of different parities. The loss of integral control emanates from the fact that the total parity of
any molecular wavefunction is reversed each time a photon is absorbed, since the parity of each
photon is negative and the total parity of the photon + molecule system must be conserved.
Thus, the parity of a molecular state resulting from a given initial-state absorbing an odd
number (N ) of photons is opposite that resulting from the absorption of an even number (M)
of photons by the same initial-state. The integrated interference term that reflects the overlap
integral between such states is zero.

However, these features do not prevent control over the differential cross-sections for N

and M of different parity, because no integration over angles is required. In fact, because
the continuum state |E, k̂, q−〉 accessed via multiphoton pathways of opposite parity has
contributions from angular momentum states of opposite parity, the probability of seeing
products in a given direction k̂ is not the same as the probability of observing products in
the opposite direction −k̂. That is, the ‘forward–backward’ symmetry has been broken.
This as shown below to be but one example of symmetry breaking induced by many CC
scenarios. Several theoretical papers have analysed this phenomenon [57–60]. One particularly
interesting example is control over right- vs left-handed enantiomers, discussed in detail in
section 10.

The experimental implementation of the one-plus-two-photon absorption scenario have
taken a variety of forms [61–66]. For example, Corkum and co-workers [64] have carried out
one vs two-photon absorption in crafted quantum wells in an experiment depicted schematically
in figure 6. As shown in figure 7, by varying φ2 − 2φ1, the relative phase between the second
harmonic and twice that of the fundamental frequency (at 10.6 µm), the experimentalists were
able to direct the electronic current to move in either the forward or backward direction, or to
generate a current that was equally probable in both directions.

Related results were obtained with molecules. For example, following the theoretical
predictions of Charron et al [67, 68], displayed in figure 8 on the photodissociation of H+

2,
Dimauro et al [65] performed an experiment (shown schematically in figure 9) to control
product directionality in HD+ dissociation to H+D+ and H++D. Here, a combination of a one-
photon process, induced by the second harmonic, and a two-photon process, induced by the

Figure 6. Energy band diagram of a 55 A GaAs/Ga0.74Al0.26As QW and wave functions of the
states implied in a 5.3 µm single-photon pathway and a 10.6 µm two-photon process. Neither
dephasing nor reflections of the electronic waves on the neighbour quantum wells are considered
in this simplified figure. Taken from figure 1, [64].
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Figure 7. An experiment showing the integrated quantum well response vs the relative laser phase.
Dashed line: sinusoidal fit. Taken from figure 4, [64].

Figure 8. The computed H+ current resulting from the photodissociation of H+
2 as a function of

ϕ = φ2 − 2φ1, the difference between the second harmonic phase and twice the phase of the
fundamental photon. Taken from figure 6, [68].

fundamental frequency, were used to excite the molecule to a repulsive 2pσ state yielding
either the H + D+ or the D + H+ products. The results of the experiment are shown in figure 10.
We see that the angle at which the ions appear can be varied by changing the φ2 − 2φ1 relative
phase.

It is interesting to note (see figure 10(b)) that the ratio between the H+ and D+ ions does not
vary with the relative phase. This is partly in agreement with the analysis presented above that,
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Figure 9. Potential curves for the 1sσ and 2pσ states of HD+. In the homonuclear case (H+
2 ),

the two-states are asymptotically degenerate; the degeneracy is lifted in the heteronuclear case by
29.8 cm−1 (inset). Taken from figure 1, [65].

within lowest order perturbation theory, the ratio between integral cross-sections of different
channels cannot be controlled by an N - vs M-photon scenario when N and M possess different
parities. This means that, within the confines of perturbation theory, when we average over all
angles we should find a phase independent H+/D+ branching ratio. This argument does not,
however, explain why this lack of discrimination should hold for each and every angle: as can be
seen from figure 10(a), the H+/D+ ratio is independent of the dissociation angle. Moreover, an
argument based on low order perturbation theory is not expected to hold in the long wavelength
regime where multiple photon transitions are involved, and isotopic discrimination is therefore
expected to occur [68].

We conclude that in the short wavelength regime what is being affected in the dissociation
of HD+ is the motion of the (lone) electron. The electron is seen to direct itself towards the
forward or backward directions in the laboratory frame as the φ2 −2φ1 relative phase is varied.
Since the experiment monitored only dissociative events where the electron is still bound to the
molecule, the electron simply ‘rides’ on whatever ion happens to be pointing in its preferred
laboratory direction. If, while the molecule is rotating and dissociating, the electron finds the
D+ nucleus pointing in its preferred direction, it attaches itself to the deuteron and the neutral
D atom will emerge in that direction (with the H+ ion emerging in the opposite direction).
The situation is reversed if the proton happens to be moving in the direction preferred by the
electron.

These conclusions, that even if ionization does not occur, it is often the electron that is
being controlled rather than the nuclei, follow the work of Aubanel and Bandrauk [69] who
have shown such electronic control in the photodissociation of Cl2. The case for electronic
control is naturally stronger when the lasers are intense enough to ionize the molecule. In that
case the interference between the one-photon and two-photon processes has been shown to
affect the ionization yield [70]. Additional theoretical and experimental work on the control of
atomic phenomena in ω+2ω and ω+3ω scenario has been reviewed in detail by Ehlotzky [71].

6. Pump-dump control: few level excitation

Control of the dynamics via a pump-dump scenario was first introduced by Tannor, Rice and
Kosloff [16, 17, 72] with insight afforded by localized wave packets [73], an approach that is
associated with many level excitation, and which is reviewed in detail in [2]. Here, we only
discuss the few levels case shown qualitatively in figure 11. It can be regarded as a useful
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(a)

(b)

(c)

Figure 10. (a) The forward/backward yield ratios of H +, βH+ = H+
f /H+

b (◦), and of D+, βD+ =
D+

f /D+
b (×), of protons and deuterons in the dissociation of HD+ vs φ = φ2 − 2φ1, the difference

between the phase of the second harmonic phase and twice the phase of the fundamental photon.
(b) Plot of the ratio of isotopes, α, vs φ. The uncertainty is indicated by the error bars. (c) The

yield of the photoelectron arising from the Kr
h̄ω3,3h̄ω1−→ Kr+ + e− photoionization moving towards

the detector vs φ. The modulations were used to calibrate φ. Taken from figure 3, [65].

extension of the scenario outlined in section 3.1, in which the initial superposition of bound
states is prepared with one laser pulse and subsequently dissociated with another.

Consider a molecule, initially (t = 0) in an eigenstate |E1〉 of the molecular Hamiltonian
HM that is subjected to two transform limited light pulses, termed the ‘pump’ and ‘dump’
pulses. These pulses are assumed to be temporally separated by a time delay �d . The electric
field consists of two temporally separated pulses Ex(τ ), Ed(τ ) (where τ is the retarded time
(t −z/c)) (figure 12). For both pulses the electric field is of the form E(τ ) = 2εε(τ ) cos(ω0τ),
which is a parameterization of equation (2). Here, ω0 is the carrier frequency and ε(τ ) describes
the pulse envelope. Thus, the molecule is subjected to the field,

E(τ ) = Ex(τ ) + Ed(τ ). (79)
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Figure 11. Pump-dump control scenario.

For convenience, we use Gaussian pulses that peak at t = tx and td , respectively. In particular,
the excitation pulse is of the form

Ex(τ ) = 1

2
ε̂xεx exp[−i(ωxτ + δx)] exp

[
− (τ − tx)

2

τ 2
x

]
, (80)

where the Gaussian pulse is spread with width τx about time tx and carries an overall phase δx .
The associated frequency profile is given by the Fourier transform of equation (80):

εx(ω) =
(√

π

2

)
εxτx exp[−i(ωx − ω)tx] exp

[
−τ 2

x (ωx − ω)2

4

]
exp(−iδx). (81)

Further, we define ε̄x(ω) as in equation (11), with φ(ω) = (ω − ωx)tx − δx.

The analogous quantities for the dissociation laser, Ed(τ ), εd(ω) and ε̄d (ω) are defined
similarly, with the parameters td and ωd replacing tx and ωx , etc. The pump pulse Ex(τ )

Figure 12. Interfering 2 two-photon pathways to energy E contained in the pump-dump control
scheme of figure 11. The εx, εd labels indicate whether the excitation or dissociation laser is
causing the indicated transition.
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induces a transition to a linear combination of the eigenstates |Ei〉 of the excited electronic
state. The pump pulse may be chosen to encompass any number of states. Here, we choose
the pump pulse sufficiently narrow to excite only two of these states, |E2〉 and |E3〉. The
dump pulse Ed(τ ) dissociates the molecule by further exciting it to the continuous part of
the spectrum. Both fields are chosen sufficiently weak for perturbation theory to be valid.

Since the two pulses are temporally distinct, it is convenient to deal with their effects
consecutively. After the first pulse is over, the superposition state prepared by the Ex(τ ) pulse,
whose width is chosen to encompass just the two levels |E2〉 and |E3〉, is given in first order
perturbation theory as

|φ(t)〉 = |E1〉e−iE1t/h̄ + b2|E2〉e−iE2t/h̄ + b3|E3〉e−iE3t/h̄, (82)

where (equation (10))

bk =
(

2π i

h̄

)
〈Ek|ε̂ · d|E1〉ε̄x(ωk,1), k = 2, 3 (83)

with ωk,1 ≡ (Ek − E1)/h̄.
After a delay time of �d ≡ td − tx the system is subjected to the Ed(τ ) pulse. It follows

from equation (82) that after this delay time each preparation coefficient has picked up an
extra factor of e−iEk�d/h̄, k = 2, 3. Hence, the phase of b2 relative to b3 at that time increases
by [−(E2 − E3)�d/h̄ = ω3,2�d ]. Thus, the natural two-state time evolution controls the
relative phase of the two terms, replacing the externally controlled relative laser phase of the
two-frequency control scenario of section 3.1.

After the action and subsequent decay of the Ed(τ ) pulse, the system wavefunction is:

|ψ(t)〉 = |φ(t)〉 +
∑
n,q

∫
dE bE,m,q(t)|E, m, q−〉e−iEt/h̄. (84)

In accord with equations (36)–(39), the probability of observing the q product at total
energy E in the remote future is therefore

Pq(E) =
∑

m

|bE,m,q(t = ∞)|2 =
(

2π

h̄

)2∑
m

∣∣∣∣ ∑
k=2,3

bk〈E, m, q−|de,g|Ek〉ε̄d (ωEEk
)|2, (85)

where ωEEk
= (E − Ek)/h̄, bk is given by equation (83), and where ε̄d (ω) is given via an

expression analogous to equation (81).
Expanding the square and using the Gaussian pulse shape (equations (80) and (81)) gives,

Pq(E) =
(

2π

h̄

)2

[|b2|2dq(22)ε̄2
2 + |b3|2dq(33)ε̄2

3

+ 2|b2b
∗
3 ε̄2ε̄

∗
3 dq(32)| cos(ω3,2�d + αq(32) + χ)], (86)

where ε̄i = |ε̄d (ωEEi
)|, ω3,2 = (E3 − E2)/h̄ and the phases χ , αq(32) are defined via

〈E1|de,g|Eg〉〈Eg|dg,e|E2〉 ≡ |〈E1|de,g|Eg〉〈Eg|dg,e|E2〉|eiχ ,

dq(ki) ≡ |dq(ki)|eiαq(ki) =
∑

m

〈Ek|dg,e|E, m̂, q−〉〈E, m, q−|de,g|Ei〉. (87)

Integrating equation (86) over E to encompass the full width of the second pulse yields the
final expressions for the quantities we wish to control: Pq , the probability of forming channel
q, and Rq,q ′ , the ratio of product probabilities into q vs q ′ (see equation (56)).

Examination of equation (86) makes clear that Rq,q ′ can be varied by changing the delay
time �d = (td − tx) or the ratio x = |b2/b3|; the latter is most conveniently done by detuning
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the initial excitation pulse. Note that, once again, as in the scenarios above, the z dependence
of Pq vanishes due to cancellation between the excitation and dump steps. In addition, the
phases δx, δd do not appear in the final Rq,q ′ expression, so that the relative phases of the two
pulses do not affect the result.

This approach was applied to realistic systems such as the control of the Br to Br∗ branching
ratio in the photodissociation of IBr [74], and the control of Li2 photodissociation [75]. To
gain insight into the control afforded by this scenario we also applied it to a model of the
photodissociation of a hypothetical collinear DH2 complex [76]:

H + HD ← DH2 → D + H2. (88)

The first pulse is used to excite a pair of states in an electronic state supporting bound states
and the second pulse to dissociate the system by de-exciting it back to the ground state, above
the dissociation threshold.

The model potentials used in the DH2 [76] are shown in figure 13 and typical control
results are shown in figure 14. Specifically, figure 14 contours of equal DH yield as a function
of Ex − Eav and �d . Here (Ex − Eav) measures the deviation of the central excitation energy
of the pump pulse from the mean energy Eav of the pair of bound states that it excites. The DH
yield is shown to vary significantly, from 16% to 72%, as the control parameters are varied.
This is an extreme range of control, especially if one considers that the product channels only
differ by a mass factor.

The pump-dump scheme described above has also been applied to the control of the

D + OH ← HOD → H + OD

dissociation reaction, proceeding via the B1A′ excited state of HOD. In this case, both
asymptotic channels have identical potential energy surfaces so that control over the relative
yield is challenging. To consider the extent of possible control we excite an initial
superposition of the (0, 2, 0) and (1, 0, 0) states of ground state HOD ((0, 2, 0) denotes
two quanta in the bend mode and (1, 0, 0) denotes one quantum of excitation of the OD
stretch). A subsequent pulse dissociates HOD via the B1A′ continuum. A typical result
is displayed in figure 15, which shows contours of constant percentage yield of H + OD
(i.e. 100P(OD + H)/[P(OD + H) + P(OH + D)]) as a function of the time delay �d and of the
detuning of the pump laser pulse Ex −Eav. Features of this result are of note. First, significant
variations of yield ratio accompany changes in (Ex − Eav). Second, the dependence of the
yield ratio on the time delay is weak. The former feature merely reflects a natural preference,
on the part of either of the two excited states |E2〉, |E3〉 to favour production of OD over
OH. Changing Ex − Eav changes the relative contribution of each of these two-states thereby
changing the yield ratio. Thus, changes in yield ratio with changes in Ex − Eav is not due
to CC. Rather, quantum interference effects are reflected in variations of the yield ratio with
changes in �d . The fact that this is weak is indeed a reflection of the similarity of the two
product channels.

Contrary to the approach discussed here, which relies heavily on the interference generated
between a very small number of energy levels, the approach of Tannor and Rice [16, 72]
and Tannor et al [17] is based on localized wavepackets, which are a superposition of many
levels.

7. Control of chaotic dynamics

Studies in classical non-linear mechanics have shown that typical systems lie between two
limits: that of integrable dynamics and that of chaotic dynamics [78–80]. In the integrable
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(a)

(b)

(c)

Figure 13. (a) Schematic diagram of a pump-dump scheme to control the model
DH + H ← DH2 → D + H2 branching photodissociation reaction. Here, εx is the excitation pulse
and εd is the dump pulse. (b) Ground potential surface. Contour lines are spaced by 0.02 a.u.,
increasing outwards from the indicated minimum. (c) Excited potential surface. Contour lines are
spaced by 0.0098 a.u., increasing outwards from the indicated minimum. The reaction coordinate S

is shown as a thick line that is chosen here as to coincide with the minimum energy path connecting
the DH + H and the D + H2 products. Taken from figure 1, [76].

case, the dynamics of a system of N degrees of freedom possesses N conserved integrals
of motion and is stable with respect to small external perturbations. In the chaotic case, the
system dynamics usually possesses only symmetry based integrals of motion, such as the total
energy and angular momentum, and the dynamics is extremely sensitive to initial conditions
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Figure 14. Contour plot of the DH yield as a function of the detuning of the exciting pulse
Ex − Eav, and the delay variable τ ≡ �d . The actual delay is (8.44 + 2.11n) ps + τ , where n is an
arbitrary positive integer that is chosen high enough to eliminate any overlap between the pulses.
Here, the initially created superposition state is between levels 56 and 57 (E1 = 0.323 849 a.u.,
E2 = 0.323 968 a.u.) of the excited surface. The letters H and L denote the positions of the absolute
maxima and minima, whose magnitudes are explicitly shown. Taken from figure 6, [14].

and external perturbations. Even in the absence of external perturbations, a classical chaotic
system ‘loses memory’ of the initial-state exponentially fast. This categorization extends to
quantum mechanics in the sense that a system is said to be quantum mechanically chaotic if its
classical counterpart is classically chaotic. Numerous computational studies (e.g. [81]) have
shown that quantum systems do display characteristics of classical chaos if they are sufficiently
close to the classical limit, a manifestation of the correspondence principle [82]. It is expected
that the vast majority of realistic systems are sufficiently complex so as to display some degree
of classically chaotic behaviour.

Considering the sensitivity of classical chaotic systems to external perturbations, and
the ubiquitous nature of chaotic dynamics in larger systems, it is important to establish that
quantum mechanics allows for control in chaotic systems as well.

One simple molecular system that displays quantum chaos is the rotational excitation of a
diatomic molecule using pulsed microwave radiation [83]. Under the conditions adopted below
this system is a molecular analogue of the ‘delta-kicked rotor’, i.e. a rotor that is periodically
kicked by a delta function potential, which is a paradigm for chaotic dynamics [84, 85]. The
observed energy absorption of such systems is called ‘quantum chaotic diffusion’. There
are numerous manifestations of this quantum chaotic diffusion including the application to
molecules below and implementations in terms of atom optics [86], etc. Hence, this system is
of quite general interest.
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Figure 15. Percentage yield of the H + OD channel in the photodissociation of the
DOH(0, 2, 0 + 1, 0, 0) superposition state. The excitation pulse band width is 50 cm−1, the
dissociation pulse bandwidth is 50 cm−1, and the enter frequency is 71 600 cm−1. The ordinate is
the detuning of the excitation pulse ωx from the energy centre of the (0, 2, 0) and (1, 0, 0) states.
Taken from figure 3, [77].

If the orientation of a diatomic molecule is described by two angles θ and φ [87], then the
corresponding Hamiltonian is

H = Ĵ 2

2I
+ d · E0 cos θ

∑
n

�

(
t

T
− n

)
, (89)

where Ĵ is the angular momentum operator in three dimensions:

Ĵ 2 = −h̄2

[
1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
+

1

sin2 θ

∂2

∂φ2

]
. (90)

Here, d is the molecular electric dipole moment, E0 is the amplitude of the driving field whose
polarization direction defines the z direction, I is the moment of inertia of the molecule about
an axis perpendicular to the symmetry axis, and �(t/T − n) is the pulse shape function of
the form

�

(
t

T
− n

)
= 1 + 2

m=7∑
m=1

cos

[
2mπ

(
t

T
− n − 1

2

)]
. (91)

Eigenstates of the Hamiltonian H are |nJ , mJ 〉, where nJ is the angular momentum quantum
number with projection mJ along the z-axis.

As shown by Fishman [83], the kicked CsI molecule is particularly appropriate candidate
for this study since it has a large dipole moment (that increases the molecule–field coupling
strength), and the rotation–vibration coupling is small at low excitation energies so that one may
consider solely rotational excitation. We consider then the dynamics of CsI in the indicated
pulsed field, in a parameter range known to display classical chaos [88].
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To demonstrate control of chaotic dynamics consider an initial superposition state of
the form

|ψ(0)〉 = cos α|j1, 0〉 + sin α exp(−iβ)|j2, 0〉. (92)

This system is now subjected to pulsed microwave irradiation, and the rotational energy
absorption is measured in terms of a dimensionless rotational energy Ẽ ≡∑j Pj j (j +1)τ 2/2,
τ = h̄T /I , where Pj , the occupation probability of the |j, 0〉 state.

To anticipate the result note from equations (89) and (91) that the Hamiltonian is strictly
periodic in time with the time evolution operator over one period T denoted F̂ . Thus, there
exists a description of the dynamics in terms of this operator:

|ψ(nT )〉 = F̂ n−1|ψ((n − 1)T )〉 = F̂ n|ψ(0)〉, (93)

where n is an integer.
The operator F̂ can be formally diagonalized by a unitary transformation U so that,

〈ja, 0|F̂ |jb, 0〉 =
∑
jc

exp(−iφjc
)U ∗

jc,ja
Ujc,jb

, (94)

where Ujc,ja
≡ 〈jc, 0|Û |ja, 0〉 (ja = 0, 1, 2, . . .) is the eigenvector with eigenphase φjc

.
Moreover, since the basis states |j, 0〉 are time-reversal invariant, one can prove that the matrix
elements Ujc,jb

can be chosen as real numbers [89], i.e.

U ∗
jc,ja

= Ujc,ja
, ja, jc = 0, 1, 2, . . . . (95)

Further, evaluating Ẽ at t = NT with equations (92), (94) and (95) give

2Ẽ

τ 2
= 〈ψ(0)|F̂−N Ĵ 2

h̄2 F̂ N |ψ(0)〉

= cos2 α
∑
jjajb

j (j + 1)Ujaj1UjbjUjajUjbj1 eiN(φja −φjb
)

+ sin2 α
∑
jjajb

j (j + 1)Ujaj2UjbjUjajUjbj2 eiN(φja −φjb
)

+
sin(2α)

2


e−iβ

∑
jjajb

j (j + 1)Ujaj1Ujbj2UjajUjbj eiN(φja −φjb
) + c.c.


 . (96)

Evidently, the first two terms are incoherent since they do not depend on the value of
the phase β in equation (92). They represent quantum dynamics associated with each of
the states |j1, 0〉 and |j2, 0〉 independently. The last two terms represent interference effects
due to initial-state coherence between |j1, 0〉 and |j2, 0〉. Hence, the absorption of rotational
energy in this system, i.e. quantum chaotic diffusion, can be controlled by manipulating the
quantum phase β in the initial-state, which corresponds to manipulating the interference term
in equation (96).

Figure 16 shows a representative example of phase control in this system. In the
chosen parameter region the underlying classical dynamics of rotational excitation is strongly
chaotic [88] and the excitation is far off-resonance, with many levels excited. Using j1 = 1
and j2 = 2 to create the initial superposition state (|1, 0〉 ± |2, 0〉)/√2, i.e. α = π/4 and
β = 0, π in equation (92) gives the results shown in figure 16. It displays striking phase
control. That is, (|1, 0〉 − |2, 0〉)/√2 shows almost no energy absorption at all, whereas the
(|1, 0〉+ |2, 0〉)/√2 case shows extraordinarily fast energy absorption [88] before it essentially
stops at t ≈ 10T . Note (1) that this huge difference is achieved solely by changing the initial
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Figure 16. The dimensionless rotational energy of the kicked diatomic molecule Ẽ =∑
j Pj j (j + 1)τ 2/2 vs time (in units of T ). Solid line and dashed lines are for the initial-

states (|1, 0〉 + |2, 0〉)/21/2 and (|1, 0〉 − |2, 0〉)/21/2, respectively, for τ = 1.2, k = 4.8. From
figure 2, [88].

Figure 17. The occupation probability Pj vs the rotational quantum number j at t = 60T .
Solid line and dashed lines are for the initial-states (|1, 0〉 + |2, 0〉)/21/2 and (|1, 0〉 − |2, 0〉)/21/2,
respectively, for τ = 1.2, k = 4.8. From figure 3, [88].

relative phase between the two participating states |1, 0〉 and |2, 0〉 in the initial superposition
state, and (2) that by contrast, each of |1, 0〉 or |2, 0〉 individually would give very similar
diffusion behaviour lying between the solid and dashed lines in figure 16. This shows that
the two participating states |1, 0〉 and |2, 0〉 can either constructively or destructively interfere
with one another, even though the underlying classical dynamics is strongly chaotic. A detail
of the respective wavefunctions at t = 60T is shown in figure 17 in terms of the occupation
probability Pj vs j . One sees vividly that changing β from 0 to π alters the occupation
probability of many states by almost an order of magnitude.

The quantum dynamics of the kicked molecule depends on two parameters, τ ≡ h̄T /I

and k ≡ d · E0/h̄. However, as shown elsewhere [88] the classical dynamics depends solely in
the product kτ . Thus, by decreasing the magnitude of τ ≡ h̄T /I while keeping kτ fixed, we
can approach the classical limit while keeping the underlying classical dynamics unaffected.
This is a useful tool to show that the demonstrated phase control is indeed quantal in nature.
Specifically we show, in figure 18, the CsI quantum dynamics after reducing the effective
Planck constant τ by 50 times, while keeping kτ constant. Here, with τ = 0.024 and k = 240,
the energy diffusion only shows slight dependence on β. That is, the phase control disappears,
clearly demonstrating the quantum nature of the control.

The ideas here have been extended in a number of ways to include various types of
pulse sequences that allow for a wide range of control [90], (including faster-than-anamolous
diffusion) over energy absorption in the kicked rotor systems and their analogues.
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Figure 18. The occupation probability Pj vs the rotational quantum number j at t = 60T .
Solid line and dashed lines are for the initial-states (|1, 0〉 + |2, 0〉)/21/2 and (|1, 0〉 − |2, 0〉)/21/2,
respectively, for τ = 1.2, k = 4.8. From figure 5, [88].

8. CC of collisions

The results described above deal with control of unimolecular processes, i.e. processes
that begin with a single molecule that subsequently undergoes excitation and dynamics.
However, the vast majority of chemical reactions occur via two-body collisions (‘bimolecular’
processes), e.g.

A + B → C + D, (97)

where A, B, C, D are, in general, molecules of mass MA, MB , MC and MD . Here, C and
D can be identical to A and B (non-reactive scattering) or different from A and B (reactive
scattering). We label A+B as arrangement q and C +D as arrangement q ′. Below we describe
CC of collisions ([91–94], [95]5, [96–98]).

The cross-section σE(n, q ′; m, q) for scattering between the asymptotic states |E, q, m; 0〉
of A + B (labelled q) and |E, q ′, n; 0〉 of C + D (labelled q ′) is given by

σE(n, q ′; m, q) = |〈E, q ′, n−|Vq |E, q, m; 0〉|2. (98)

Here |E, q ′, n−〉 denotes the incoming scattering solutions associated with product in state
|E, q ′, n; 0〉 and Vq is the component of the total potential that vanishes as the A to B distance
becomes arbitrarily large. The cross-section for scattering into arrangement q ′, independent
of the product internal state n, is then

σE(q ′; m, q) =
∑

n

|〈E, q ′, n−|Vq |E, q, m; 0〉|2. (99)

Assorted other cross-sections may be defined, depending upon which of the elements of n
are summed over. For example, by not including the scattering angles θ, φ in the sum we
obtain σE(q ′, θ, φ; m, q), corresponding to scattering into the q ′ product channel and into
scattering angles (θ, φ). Similarly, σE(q ′, θ; m, q) is the traditional differential cross-section
σE(q ′, θ; m, q) = ∫ 2π

0 dφ σE(q ′, θ, φ; m, q) into angle θ .
Note that the above formalism is in the the centre-of-mass coordinate system, i.e. it arises

in scattering theory after separating out the motion of the centre-of-mass of A − B, a feature
discussed in greater detail in section 8.1.

5 An erratum clarifies that the results shown in [94] are valid at φ = 0 and that control over the total cross-section is
not possible when building the initial superposition from helicity states.
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Control of collisions is achieved by constructing an initial-state |E, q, {am}〉 composed of
a superposition of N energetically degenerate asymptotic states |E, q, m; 0〉:

|E, q, {am}〉 =
∑

m

am|E, q, m; 0〉. (100)

The cross-section associated with using equation (100) as the initial-state, obtained by replacing
|E, q, m; 0〉 by equation (100) in (98), is

σE(n, q ′; {am}, q) =
∣∣∣∣∣〈E, q ′, n−|Vq

∑
m

am|E, q, m; 0〉
∣∣∣∣∣
2

=
∑

m

|am|2|〈E, q ′, n−|Vq |E, q, m; 0〉|2

+
∑
m′

∑
m�=m′

ama∗
m′ 〈E, q, m′; 0|Vq |E, q ′, n−〉〈E, q ′, n−|Vq |E, q, m; 0〉

≡
∑

m

|am|2σ(n, q ′; m, q) +
∑
m′

∑
m�=m′

ama∗
m′σ(n, q ′; m′, m, q), (101)

where σ(n, q ′; m′, m, q) is defined via equation (101). The total cross-section into arrangement
q ′ is then given by

σE(q ′; {am}, q) =
∑

n

σE(n, q ′; {am}, q). (102)

Note that equation (101), and hence equation (102), are of a standard CC form, i.e. direct
contributions from each individual member of the superposition, proportional to |am|2, plus
interference terms that are proportional to ama∗

m′ . It is clear that if we control the am,
through assorted preparation methods, then we can control the interference term, and hence
the scattering cross-section.

8.1. Issues in the preparation of the scattering superposition

To describe how the required superposition state (equation (100)) can be constructed in
the laboratory requires some introductory remarks. Note first that equations (98)–(102) and the
|E, q, m; 0〉 states are understood to be in the centre-of-mass coordinate system and describe the
relative translational motion as well as the internal state of A and B. In typical A−B scattering,
separating out the centre-of-mass motion comes about in a straightforward way. That is, let
rA and rB denote the laboratory position of A and B and h̄kA, h̄kB denote their laboratory
momenta. The relative momentum k, relative coordinate r, centre-of-mass momentum K and
position Rcm are defined as

K = kA + kB, Rcm = (MArA + MBrB)

(MA + MB)

k = (MBkA − MAkB)

(MA + MB)
, r = rA − rB.

(103)

In the case where A and B are initially in internal states |φA(i)〉 and |φB(j)〉, of energies
eA(i) and eB(j), and the initial A and B translational motion are described by plane waves of
momenta kA

i and kB
j then the incident wavefunction ψin is the product

ψin = |φA(i)〉|φB(j)〉 exp(ikA
i · rA) exp(ikB

j · rB)

= |φA(i)〉|φB(j)〉 exp(ik · r) exp(iK · Rcm). (104)
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The second equality follows from equation (103). Since the interaction potential Vq between A

and B depends only upon the relative coordinates of A − B, the centre-of-mass momentum is
conserved in the collision, allowing us to separate out the centre-of-mass motion and to describe
the dynamics in the centre-of-mass coordinate system, i.e. in terms of |φA(i)〉|φB(j)〉 exp(ik·r).
This state is, in fact, 〈r|E, q, m; 0〉, where the relative motion is in the coordinate representation.

Note that the scattering in equation (104) occurs at fixed value of the centre-of-mass
momentum K. Scattering may also occur from a state comprised of different K values. For
example, the incident wavefunction may be of the form

|ψin〉 =
∑
lm

dlm|E, q, m; 0〉|Kl〉 (Kl′ �= Kl). (105)

Since the centre-of-mass momentum is conserved and can be measured, components of the
wavefunction with different values of |Kl〉 contribute independently to the reaction cross-
section and do not interfere with one another. That is, the cross-section for scattering into
|E, q ′, n; 0〉 in this case is given by

σE(n, q ′; {dlm}, q) =
∑

l

∣∣∣∣〈E, q ′, n−|Vq

∑
m

dlm|E, q, m; 0〉
∣∣∣∣
2

. (106)

Consider now preparation of the generalized superposition states (equation (100)) where
for simplicity we limit consideration to a superposition of two states. To do so we examine the
scattering of A and B, each in a previously prepared in the laboratory in a superposition state.
The wavefunctions of A and B in the laboratory frame, ψA and ψB , are of the general form:

|ψA〉 = a1|φA(1)〉 exp(ikA
1 · rA) + a2|φA(2)〉 exp(ikA

2 · rA), (107)

|ψB〉 = b1|φB(1)〉 exp(ikB
1 · rB) + b2|φB(2)〉 exp(ikB

2 · rB). (108)

The incident wavefunction is then the product

|ψin〉 = |ψA〉|ψB〉 = [a1|φA(1)〉 exp(ikA
1 · rA) + a2|φA(2)〉 exp(ikA

2 · rA)]

× [b1|φB(1)〉 exp(ikB
1 · rB) + b2|φB(2)〉 exp(ikB

2 · rB)]

=
2∑

i,j=1

Aij exp(ikij · r) exp(iKij · Rcm), (109)

where

Aij = aibj |φA(i)〉|φB(j)〉, kij = (MBkA
i − MAkB

j )

(MA + MB)

and

Kij = kA
i + kB

j .

As constructed, equation (109) is composed of four independent non-interfering incident
states since each has a different centre-of-mass wavevector Kij . However, we can set conditions
so that interference, and hence control, is allowed. That is, we can require the equality of the
centre-of-mass motion of two components, plus energy degeneracy:

K12 = K21

h̄2k2
12

2µ
+ eA(1) + eB(2) = h̄2k2

21

2µ
+ eA(2) + eB(1),

(110)
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with µ = MAMB/(MA + MB). Equation (109) then becomes

ψin = [A12 exp(ik12 · r) + A21 exp(ik21 · r)] exp(iK12 · Rcm)

+ A11 exp(ik11 · r) exp(iK11 · Rcm) + A22 exp(ik22 · r) exp(K22 · Rcm), (111)

where the term in the first bracket, due to equation (110), is a linear superposition of two
degenerate states. We therefore expect that the scattering cross-section will be composed of
non-interfering contributions from three components with differing Kij , but where the first term
allows for control via the interference between the A12 and A21 terms. The two remaining
terms, proportional to A11 and A22, are uncontrolled satellite contributions.

For example, if we design the experiment so that kA
1 = −kB

2 and kA
2 = −kB

1 then
K12 = K21 = 0, and k12 = kA

1 , k21 = −kB
1 , so that the degeneracy requirement (equation (110))

becomes

h̄2(kA
1 )2

2µ
+ eA(1) + eB(2) = h̄2(kB

1 )2

2µ
+ eA(2) + eB(1). (112)

Note also that we can implement equation (112) for the case of atom-diatomic-molecule
scattering by setting |φA(1)〉 = |φA(2)〉 = |φA(g)〉, where |φA(g)〉 is the, e.g. ground electronic
state of atom A. In this case, the degeneracy condition (equation (112)) is

h̄2

2µ
[(kA

1 )2 − (kA
2 )2] = [eB(1) − eB(2)]. (113)

In general, these conditions demand a method of preparing |ψA〉 and |ψB〉 that correlate
the internal states |φA(i)〉 and |φB(i)〉 with their associated momenta kA

i , kB
i so as to obtain

equation (112). Since the overall phase of the wavefunction is irrelevant to the state of the
system, the dynamics is not sensitive to the overall phase of |ψA〉|ψB〉. However, the phases
of the interference term must be well defined, or the control will average to zero.

Specifically, CC of collisional processes requires the production of states (equation (108))
where the translational and internal states are entangled, i.e. composed of components in which
two or more translational and internal states are correlated. Although such states result from
photodissociation processes (see, e.g. equation (38)) they are not necessarily suitable for our
purposes. Below we provide three tentative suggestions for producing these states whose
realization would require an extension of current laboratory techniques.

For example, entangled states which might be useful for collisional control have been
prepared in atoms in a relatively straightforward way [99]. Consider, for example, a system
with two levels |E1〉, |E2〉, initially in the lower state |E1〉 and moving with kinetic energy
Et(1). Passing the system through a spatially dependent field with off-resonant frequency
ω = (E2 − E1)/h̄ − δ results in excitation to the state |E2〉 with kinetic energy Et(2).
Conservation of energy requires, however, that

E1 + Et(1) + h̄ω = E2 + Et(2) (114)

or Et(2) = Et(1)−h̄δ. That is, the created superposition state has two internal states correlated
with two different translational energy states, precisely as required for the CC of collisions.
Tuning δ above or below the resonance results in an increase, or decrease, of kinetic energy
upon excitation. The extension of this technique to most cases of interest to us will, however,
be difficult since the h̄δ required is far larger than that in the atomic case.

Similarly, the momentum transfer associated with a collision of photons with atoms is
used regularly to cool atoms (see [100] for a review), i.e. to alter the translational energy of
an atom. Indeed, the momentum of large numbers of photons (over 140 photon momenta)
have been successfully transferred coherently to atoms [101]. This suggests the possibility
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of preparing an initial superposition of internal states of a molecule, followed by the state-
specific absorption of photon momenta of one of the internal states in order to form the required
entangled superposition of the translational and internal states.

Finally, we note that a number of experiments have shown that it is possible to accelerate
or decelerate molecules using time varying electric fields (see [102] and references therein). In
this case, the molecule is passed through an array of synchronously pulsed electric field stages
that interact with the molecular dipole. Since the dipole is a function of the state of the system
it may be possible to prepare a superposition of internal states and then selectively accelerate
one of the two internal states to produce the desired superposition.

8.2. Identical particle collisions

A number of computations ([91–94], [95]5, [96–98]) have been carried out, on systems such
as H + H2 and F + HD, that demonstrate the degree of control afforded by this approach to
atom–diatom scattering. However, in this review we call attention to applications to identical
particle scattering which provide a simplified means of satisfying the conditions above and are
of interest to studies of entangled states and cold collisions.

Consider then the case of identical particle collisions, i.e. when B = A. Specifically,
consider

A + A′ → C + D (115)

with kA
i = kA′

i . Here, we have used A′ to denote the molecule A, but in a superposition state that
is not necessarily the same as A. If we prepare each of the two initial A and A′ superposition
states from the same molecular bound states, e.g. |φA(1)〉 = |φA′(1)〉 and |φA(2)〉 = |φA′(2)〉
then the requirement for conservation of energy in the centre-of-mass (equation (110)) becomes

k2
12 = k2

21. (116)

For the case of A + A′ collisions, this condition is always satisfied.
This scenario opens up a wide range of possible experimental studies of control of

collisional processes. Specifically, we need only prepare A and A′ in a controlled superposition
of two-states (e.g. by resonant laser excitation of |φA(1)〉) to produce a superposition with
|φA(2)〉, direct them antiparallel in the laboratory and vary the coefficients in the superposition
to affect the reaction probabilities. Control originates in quantum interference between two
degenerate states associated with the contributions of |φA(1)〉|φA′(2)〉 and |φA(2)〉|φA′(1)〉.
This is accompanied by two uncontrolled scattering contributions corresponding to the
contributions of |φA(1)〉|φA′(1)〉 and |φA(2)〉|φA′(2)〉. Control is achieved by varying the
four coefficients ai, bi, i = 1, 2.

The control approach described above can be generalized to a superposition of N levels
in each of the two A and A′ reactants. Specifically, choosing all kA

i = kA and with kA′
i = −kA

we have

|ψA〉 = exp(ikA · rA)

[
N∑

i=1

ai |φA(i)〉
]

,

|ψA′ 〉 = exp(−ikA · rA′)


 N∑

j=1

bj |φA′(j)〉

 .

(117)

The scattering wavefunction is then

|ψin〉 = |ψA〉|ψA′ 〉 = exp(ik · r)

[
N∑

i=1

ai |φA(i)〉
] N∑

j=1

bj |φA′(j)〉

 . (118)
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Since MA = MA′ , k = (kA − kA′
)/2 = kA. The kinetic energy k2/2µ is the same for each

term in equation (118) so that degenerate states in the centre-of-mass frame correspond to
states |φA(i)〉|φA′(j)〉 in equation (118) which are of equal internal energy eA(i) + eA′(j).
Expanding the product in equation (118) gives N2 terms, N terms of which are of differing
energy 2eA(i), i = 1, . . . , N and (N2 −N) states of energy eA(i)+eA′(j), i �= j . Of the latter
terms, each is accompanied by another term of equal energy (i.e. eA(i)+eA′(j) = eA(j)+eA′(i)).
Hence, the N2 terms are comprised of N direct terms plus (N2 −N)/2 degenerate pairs which
are a source of interference, and hence control. Here control is achieved by altering the 2N

coefficients ai, bi in the initially prepared state (equation (118)), e.g. by shaped pulsed laser
excitation of A and A′.

Computational examples of this approach have been restricted to control over rotational
excitation in H2 + H2, a consequence of limitations on the ability to perform quantum
computations on AB + AB scattering. A careful analysis of the scattering [103] requires
consideration both of the interference effects as well as the nature of the identical particle
scattering. Typical results are shown in figure 19 for various low energy scattering cases.
Specifically, we show the differential cross-section into scattering angles θ and final states
j ′

1 = j ′
2 = 2, arising from scattering of para H2 + para H2, where each H2 is in an initial

superposition, with either a plus or minus sign, of j1 = 4 and j2 = 0. The cross term
contributing to the scattering in these cases is

|ψ±
j1j2

〉 = 1√
2

[|j1〉|j2〉 ± |j2〉|j1〉]|m1 = 0, v1 = 0〉|m2 = 0, v2 = 0〉, (119)

where vi, mi denote the vibrational state and angular momentum projection along the z-axis.
Note that results for mi = m2 are essentially independent of the value of mi .

The results of this computation (figure 19—note the logarithmic ordinate scale) clearly
show that the phase of the j1, j2 superposition has a significant effect on the differential cross-
section. This translates into considerable control over the total inelastic cross-section, i.e. the
integral of the differential cross-section over θ . For example, in panel (c) of figure 19, the
total inelastic cross-section is 0.057 for |ψ+

j1j2
〉 and 0.032 for |ψ−

j1j2
〉. A careful analysis [103]

shows that the control contribution is due to the presence of entangled states between the two
reactant molecules.

Results on more complex scattering, e.g. reactive scattering, await further computational
(or experimental) developments.

9. Decoherence and loss of control

Thus, far we have dealt with idealized isolated molecules that are neither subject to external
collisions nor display spontaneous emission. Further, we have assumed that the molecule is
initially in a pure state and that the externally imposed electric field is coherent, i.e. that the
field is described by a well defined function of time. Under these circumstances the molecule
is in a pure state before and after laser excitation, and remains so throughout its evolution.
However, if the molecule is initially in a mixed state (e.g. due to prior collisional relaxation),
or if the incident radiation field is not fully coherent (e.g. due to random fluctuations of the
laser phase or of the laser amplitude), or if collisions cause the loss of quantum phase after
excitation, then phase information is degraded, interference phenomena are muted and laser
control is jeopardized.

Loss of quantum information (either of the phase or of the amplitude of a state) due to
the interaction of a system with its environment is termed decoherence. Examples include the
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(a)

(b)

(c)

Figure 19. Inelastic differential cross-section for para H2 + para H2, where the collision energy
is (a) 400 cm−1, (b) 40 cm−1, and (c) 4 cm−1. Dashed and solid lines are for the incoming free
entangled states |ψ+

j1j2
〉 and |ψ−

j1j2
〉. Here, j1 = 4, j2 = 0, j ′

1 = j ′
2 = 2. From figure 2, [103].

obvious case where a system is actually embedded in an external environment, e.g. a molecule
in solution, or more subtle cases, e.g. where the system is chosen as the centre-of-mass of a
body and the environment is the 1023 variables associated with the motion of the atoms that
comprise the system.

The current view is that certain forms of decoherence can cause the loss of quantum
interference in just such a way that the resultant system then obeys classical mechanics [104].
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This view does not obviate the possibility that classical mechanics is, in fact, the limit of
quantum mechanics when h̄ → 0, (i.e. when the system action becomes very large) [82].
Rather, it proposes an alternate route to classical mechanics for systems in interaction with
their environment. Clearly, decoherence effects that change the dynamics from quantum
to classical mechanics will destroy quantum phases and hence destroy CC. Indeed, most
decoherence effects work towards the loss of quantum phase and have deleterious effects on
control.

Consider then a system s interacting with an environment. The total Hamiltonian Htot is
of the form

Htot = Hs + Henv + Hint, (120)

where Hs is the system Hamiltonian, Henv is the Hamiltonian of the environment, and Hint is
the interaction between them. Ultimately, we intend to focus solely on the properties of the
system, i.e. the quantities of interest. To do so we have to deal with mixed states and hence we
have to invoke the density matrix formulation of quantum mechanics [105]. That is, the system
plus environment is described by a density operator ρtot(t) whose dynamics is given by the
quantum Liouville–von Neumann equation;

ih̄
∂ρtot(t)

∂t
= [Htot, ρtot(t)]. (121)

Since it is the dynamics of the system that is of interest, it would be convenient to pre-
average over the environment variables and obtain an equation of motion for ρs(t), the system
component of the density matrix. Formal work of this kind [106, 107] yields the so-called
generalized master equation. Deriving the generalized master equation and extracting the
various approximations utilized goes well astray of the central focus of this review, but many
reviews of this topic are available [106, 107].

If the correlation time of the environment is much shorter than the typical timescale for
the variation of the system then the generalized master equation is of the form

∂ρs(t)

∂t
= −ih̄−1[Hs, ρs(t)] + F(ρs), (122)

where F(ρs) is a functional of ρs . Its functional form depends upon the nature of the
environment and on the coupling Hint. A variety of approximations to these generally
complicated equations are available, and are utilized below.

9.1. Sample computational results on decoherence

To demonstrate the effect of decoherence we consider computational results [108] using a
model, due to Caldeira–Leggett and Zurek [109], that is widely regarded as a paradigm for
studies of decoherence. Here, the system interacts with a bath comprising harmonic oscillators
in the weak coupling and high temperature limit. The harmonic bath thus serves as the source of
the decoherence experienced by the system. As a concrete example, we consider the vibrational
motion of a model molecule with two degrees of freedom coupled to an harmonic bath.

In doing so it proves convenient to carry out the computations in the Wigner representation.
Recall that the Wigner representation ρW of the density operator ρ is defined, for an N degree
of freedom system, by

ρW ≡ ρW(q, p) = (πh̄)N
∫

dv e−2ip·v/h̄〈p − v|ρ|q + v〉 (123)

and the Wigner representation of any operator A, denoted by the superscript W , is given by

AW = 2N

∫
e−2ip·v/h̄〈q − v|A|q + v〉. (124)



896 M Shapiro and P Brumer

The Caldeira–Leggett and Zurek models for a two degree of freedom oscillator system
with Hamiltonian Hs in contact with a bath is given by [108]
∂ρW

s (t)

∂t
= − ih̄−1[Hs, ρs(t)]

W + FW
CL(ρs)

≡

{Hs, ρ

W
s } +

∑
(l1+l2) odd

(h̄/2i)(l1+l2−1)

l1!l2!

∂(l1+l2)V (x, y)

∂xl1∂yl2

∂(l1+l2)ρW
s

∂p
l1
x ∂p

l2
y


 + FW

CL(ρs).

(125)

Here,

FW
CL(ρs) = D

(
∂2ρW

s

∂p2
x

+
∂2ρW

s

∂p2
y

)

denotes the Caldeira–Leggett form of F(ρs) in the Wigner representation. The term in square
brackets in equation (125) is the Wigner representation [Hs, ρs(t)]W of [Hs, ρs(t)]. Here
(px, py, x, y) are the system momenta and coordinates, V (x, y) is the potential contribution
to the Hamiltonian H and ρW

s = ρW
s (px, py, x, y; t). The first term

{Hs, ρ
W
s } = ∂Hs

∂x

∂ρW
s

∂px

− ∂Hs

∂px

∂ρW
s

∂x
+

∂Hs

∂y

∂ρW
s

∂py

− ∂Hs

∂py

∂ρW
s

∂y

on the right-hand side of equation (125) is the classical Poisson bracket that generates classical
dynamics, the second term is responsible for the difference between quantum and classical
mechanics, and the third term induces decoherence.

Numerical calculations on equation (125) can be compared to classical mechanics by
computing the classical phase space density ρcl(x, y, px, py), which is obtained as the solution
to the Fokker–Planck equation:
∂

∂t
ρcl(x, y, px, py) = {Hs, ρcl(x, y, px, py)}

+D

(
∂2

∂p2
x

ρcl(x, y, px, py) +
∂2

∂p2
y

ρcl(x, y, px, py)

)
. (126)

The extent to which quantum effects are diminished in the presence of decoherence
is demonstrated in the figures that follow for the specific case of the non-linear oscillator
Hamiltonian (see, e.g. [111])

Hs = 1

2
(p2

x + p2
y + αx2y2) +

β

4
(x4 + y4) (127)

with parameters that can be related to typical molecules: β = 0.01, α = 1.0. Figure 20 shows
the classical and quantum expectation values, in the absence of decoherence (i.e. D = 0 in
equations (125) and (126)) for four moments associated with y. All figures show qualitatively
similar behaviour, i.e. after an initial period of classical/quantum agreement the quantum results
continue to oscillate while the classical results show smooth relaxation (see [112]6). Note in
particular that the quantum results do not always simply oscillate about the classical (e.g. see
results for 〈y2〉) and that the quantum fluctuations about the mean are substantial (e.g. 30% in
the case of 〈Ey〉).

Results for the same moments, after introducing decoherence, are shown in figure 21.
A comparison of figures 20 and 21 shows substantially improved classical-quantum
correspondence upon introducing decoherence. Remarkably, this is true even for 〈y2〉, where
the long term quantum average in the closed system deviated significantly from the long term
classical average. Qualitatively similar results have been obtained for reactive scattering [113].
6 Analogous results were observed previously for the stadium billiard.
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These computational results demonstrate the way in which decoherence tends to eliminate
quantum effects in the system. As a consequence, quantum control processes must be
effectively shielded from decoherence effects in order to survive.

Below we consider a number of approaches to combating decoherence in solutions and
other media where collisions are present. An alternative approach, which we do not address,
is the method of ‘decoherence free subspaces’ [114]. In this approach, one deals with the
explicit design of systems where a particular subspace is free from decoherence effects. These
approaches are of particular interest to the development of subspaces in which to carry out
quantum computation, an approach in which the computational machinery follows the laws
of quantum mechanics [115]. By contrast, we deal below with the need to curb decoherence
effects in traditional pre-existent systems.

9.2. Condensed phases: the optical Bloch equation

Recent experimental studies on interference effects in solution, and on collisional vibrational
energy transfer between molecules in solution provides some insight into the timescales for
these relaxation events. For example [116], the timescale for transfer of population to the
vibrational modes in liquid CH3OH is on the order of 5–15 ps [117]. Further, studies of the
preparation of coherent superpositions of states in solution show that phase coherences of

Figure 20. Time dependence of four statistical moments (〈y〉, 〈y2〉, 〈Py〉 and 〈Ey〉) for the system
in the absence of decoherence. Dark dots denote quantum results, thin solid lines are classical
results. From figure 1, [108].
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Figure 21. As in the previous figure, but in the presence of decoherence. From figure 2, [108].

molecules exist in solution for timescales greater than 100 fs [118, 119]. However, coherence
is expected to be lost over longer timescales.

Consider then CC as it would apply to liquid phase chemistry. Here, molecules of species
B in solution would be subjected to laser irradiation. Since we are ultimately interested in
the fate of the B molecules, B is the system and the remaining molecules in the solution, and
the laser, are the environment. Decoherence effects can then arise from the collisions of the
solvent with the molecule of interest, or from incoherence properties of the laser that cause
some loss of quantum phase information. Countering these decoherence effects is discussed
below.

We consider the simplest of models, the optical Bloch equation for relaxation and
concomitant decoherence in the energy representation, and examine scenarios to counter
collisional effects. With |Ei〉 denoting the eigenstates of the system Hamiltonian, we define
ρi,j (t) = 〈Ei |ρs(t)|Ej 〉 as the matrix (energy) representation of the density operator. The
equation of motion for ρs(t) is then

∂ρi,j (t)

∂t
= −ih̄−1[Hs, ρs(t)]i,j − 1

Ti,j

ρi,j (t) (128)

with Ti,i = T1 and Ti,j = T2 for i �= j . Here, T1 and T2 are phenomenological relaxation times.
In this model, where F(ρ)i,j = −ρi,j (t)/Ti,j , the coherent terms ρi,j (t), i �= j decay with a
rate 1/T2 and populations ρi,i(t) decay with rate 1/T1. If the system is in the presence of a
radiation field, then Hs in equation (128) is augmented by the dipole–electric field interaction.
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The simplest optical Bloch equations result from a system comprised of two eigenstates
|E1〉, |E2〉 of the molecule Hamiltonian HM that experience the electric field-dipole interaction

HMR = −E ε̂ · d cos(ωt + φ). (129)

The Hamiltonian Hs in equation (128) is Hs = HM + HMR. Equation (128) then becomes
(where we suppress the t dependence of ρ(t)):

∂ρi,j

∂t
= −ih̄−1

∑
k

[Hi,kρk,j − ρi,kHk,j ] − 1

Ti,j

ρi,j , (130)

where

Hi,k = Eiδi,k − E cos(ωt + φ)di,k(1 − δi,k) (131)

and di,k = 〈Ei |ε̂ · d|Ek〉. Noting that ρi,j = ρ∗
j,i , we define

R1 = 2Im(ρ1,2) = Im(ρ1,2 − ρ2,1),

R2 = 2Re(ρ1,2) = Re(ρ1,2 + ρ2,1),

R3 = ρ11 − ρ22.

(132)

Then, with H1,2 = H2,1 for bound states subjected to equations (129) and (130) becomes

dR1

dt
= �R2 − 1

T2
R1 + 2H1,2

R3

h̄
,

dR2

dt
= −�R1 − 1

T2
R2,

dR3

dt
= − 1

T1
R3 − 2H1,2

R1

h̄
.

(133)

Here, � ≡ (E2 −E1)/h̄−ω ≡ ω2,1 −ω, i.e. the detuning of ω from the |E1〉 to |E2〉 transition.
Equation (133) constitutes the standard form of the two level optical Bloch equation.

9.2.1. Countering collisional effects. Consider now a scenario that is capable of maintaining
CC in the presence of collisions for systems that are described by the optical Bloch equations. In
particular, we reconsider the bichromatic control scenario discussed in chapter 3.2, assuming,
however, that the molecules are in solution at temperature T . Further, we irradiate the system
so as to saturate the |E1〉 to |E2〉 transition and simultaneously photodissociate the system.

The initial-state, prior to dissociation, is a mixed state described, in the energy
representation, by a 2×2 density matrix with elements ρi,j , (i, j = 1, 2). Photodissociation of
this mixed state can be written as a generalization [120] of equation (48). In equation (48), we
assumed an initial-state of the form of

∑2
j=1 aj |Ej 〉 exp(−iEj t/h̄) so that the corresponding

density matrix would be ρm,k = aka
∗
m. That is, equation (48) could be rewritten as

Pq(E) =
(

2π

h̄

)2 N∑
i,j=1

[ρi,j ε̄(ωE,i)ε̄
∗(ωE,j )]dq(j i). (134)

Equation (134) is, in fact, the correct generalization to the case where the initial-state is mixed
and is represented by ρi,j . Below we neglect the z dependence in ε̄, replacing it by ε.

To utilize equation (134) we determine ρi,j for the case where two levels |E1〉 and |E2〉
are continuously subjected to radiation and to collisions, using the optical Bloch approach. We
note that if, as in the bichromatic control cases discussed above (section 3.2), |E1〉 and |E2〉 have
the same parity, a one-photon absorption cannot couple these states. We must therefore consider
saturating this transition using two-photon absorption through an off-resonant intermediate
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bound state |E0〉 with dipole matrix elements d0j = 〈E0 | d · ε̂ | Ej 〉, and with E2 > E0 > E1.
For simplicity, we assume that 2ω = (E2−E1)/h̄, so that the transition is two-photon resonant,
and we sketch the extension [121] of equation (133) to two-photon absorption7. To carry out
this extension, we write the Bloch equations (equation (130)) for the three level |E0〉, |E1〉 and
|E2〉, and adopt the adiabatic approximation for off-resonant transitions to level |E0〉. This
approximation is equivalent [121] to setting dρ2,0/dt = dρ1,0/dt = 0. Substituting the result
into the remaining equations gives the set of equations for dρi,j /dt , with i, j = 1, 2. This set
can be rewritten, with the help of a modified version of equation (132), where ρ1,2 is replaced
by ρ1,2 exp(−2iφ), as

dR1

dt
= −D2,1R3

2
− R1

T2
,

dR2

dt
= −R2

T2
,

dR3

dt
= D2,1R1

2
− (R3 − Re

3)

T1
,

(135)

where

D2,1 = E2d2,0d0,1

[2h̄2(ω − ω01)]
. (136)

Here, we have recognized that the quantity R3 relaxes to the thermodynamic population
difference Re

3 at temperature T , with:

Re
3 = [1 − exp(−h̄ω2,1/kBT )]

[1 + exp(−h̄ω2,1/kBT )]
. (137)

At long times (t � T2, T1) the system saturates, i.e. dR3/dt = 0 and equation (135)
implies that dR1/dt = 0. The equations for Ri can then be readily solved and, in conjunction
with equation (132), gives ρ1,2 at saturation:

ρ1,2 = Re
3T2D2,1 exp[i(2φ − π/2)]

(4 + D2
2,1T1T2)

,

ρ1,1 = 0.5

[
1 +

Re
3

(1 + D2
2,1T1T2/4)

]
,

ρ2,2 = 0.5

[
1 − Re

3

(1 + D2
2,1T1T2/4)

]
.

(138)

Consider then excitation of this mixed state with a Gaussian pulse, within the rotating-wave
approximation. The pulse is of the form

ε(t) = Ee−i(ωLt+δ)e−(t−t0)
2/τ 2

(139)

with Fourier transform

ε(ω) =
(

Eτ√
π

)
e−τ 2(ωL−ω)2/4e−i(ωL−ω)t0 e−iδ ≡ εωe−i(ωL−ω)t0 e−iδ. (140)

Note that this control arrangement differs from that in section 3.2 insofar as the two frequencies
ω1 = (E −E1)/h̄ and ω2 = (E −E2)/h̄ that dissociate the system are components of a single
pulse. The temporal width of the pulse is such that τ � T1, T2.

7 For the case of φ = 0, and T1 = T2 = ∞, see [121]. Note, however, that there are serious misprints in equation (3.6)
of this reference.
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Inserting the long-time ρi,j into equation (134) gives (denoting εωqi
by εi) the probability

Pq(E) of forming product in channel q at energy E as

Pq(E) =
(π

h̄

)2
[P1,1(E, q) + P2,2(E, q) + P1,2(E, q)], (141)

where

P1,1(E, q) = ρ1,1ε
2
1 dq(11) = 0.5

[
1 +

Re
3

(1 + D2
2,1T1T2/4)

]
ε2

1 dq(11),

P2,2(E, q) = ρ2,2ε
2
2 dq(22) = 0.5

[
1 − Re

3

(1 + D2
2,1T1T2/4)

]
ε2

2 dq(22)

and

P1,2(E, q) = 2 | ρ1,2 || dq(12) | ε1ε2 cos
(
αq(12) + ω2,1t0 + 2φ − π

2

)
= 0.5T2D2,1R

e
3

(1 + D2
2,1T1T2/4)ε1ε2|dq(12)| cos(αq(12) + ω2,1t0 + 2φ − π

2 )
, (142)

where αq(12) is the phase of dq(12) (see equation (54)). From these equations, it is evident that
CC can be achieved in solution by, for example, varying τ to alter the quantum interference term.

A number of simple qualitative observations are evident. First, Pq(E) depends upon the
parameters associated with the saturation through the combinations D2,1T1 and D2,1T2 (or their
ratio and product T1/T2 and D2

2,1T1T2 used below). Control vanishes if P1,2(E, q) = 0, which
occurs if either the temperature T → ∞ (i.e. Re

3 → 0) or D2,1T2 → 0. Both these limits
correspond to complete loss of coherence. Examination of equation (142) shows that this is
not the case, however, for D2,1T1 → 0, consistent with the fact that T1 relates to population,
rather than phase, relaxation. Physically [122], however, in collisional environment, T1 � T2

so that the limit T1 → 0 also implies loss of control. Note also that control vanishes under
extremely large pumping rates, D2,1 → ∞ for which ρ1,1 = ρ2,2 and ρ1,2 → 0.

Sample computational results are shown in figures 22 and 23 for the case of the
photodissociation of CH3I into CH3 + I vs CH3 + I∗. In particular, we show control over the
ratio I∗/(I + I∗) for the collision-free case in figure 22, and at temperature T = 0.2h̄ω2,1/kB

in the subsequent figure. The abscissa is S = ε2
1/(ε

2
1 + ε2

2) and the ordinate is the angle
χ1,2 = ω2,1t0 + 2φ − π/2. The results clearly show control persisting for T = 0.2h̄ω2,1/kB.
Additional studies [120] show less control at T = h̄ω2,1/kB, with control being lost at
somewhat higher temperatures.

Thus, we see that, although collisional effects do reduce the degree of control relative to
the collision-free case, saturation pumping of superposition in the bichromatic control scenario
can be used to overcome collisional effects up to some reasonable temperature.

Additional theoretical studies, several using optimal or pulse control, have been carried
out to study control in the presence of solvent and decoherence effects. These include work in
the Wilson group on a two level oscillator model coupled to a background bath [123] and on
electronic population transfer in a molecule in solution [124]. This, and more recent related
work [116, 125] have generally concluded that some degree of control is indeed possible in
solution, depending upon the extent of the coupling between system and solvent, and the degree
to which one can manipulate the incident pulses. No quantitative rules have yet emerged on
the extent to which control is, in fact, possible.

In addition to model systems, there exists [126] one fully converged computation on
control in the presence of decoherence. This computation deals with controlled proton transfer
between the keto and enol forms of 2-(2′-hydroxyphenyl)-oxazole (see figure 24), computed
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Figure 22. Contour plot of the I∗ yield [I∗/(I + I∗)] for two colour photodissociation of a pure CH3I
superposition state composed of bound states with vibrational and rotational quantum numbers
(v, J ) = (0, 2) and (1, 2) excited with frequencies ω1 = 41 579 cm−1 and ω2 = 41 163 cm−1.
Contours increase, in increments of 0.04 from the ‘centre well’. Taken from figure 1, [120].

Figure 23. As in figure 22, but at kBT = 0.2h̄ω2,1. Taken from figure 2, [120].

using semiclassical mechanics (see [127] and references therein, [128]). Here, the proton is
‘the system’ and the remaining molecule, comprising 35 coupled degrees of freedom plus
16 out-of-plane vibrational modes, serves as the environment. The results show that despite
extensive dephasing, the proton transfer dynamics is easily controlled using the bichromatic
control scenario. For example, consider the case where the initial superposition state involves
the ground vibrational state of the oxazole-hydroxyphenyl in-the-plane bending mode, i.e.
bending motion of the C1C2C7 angle, and the first excited state associated with such vibrational
mode. Figure 25 shows a contour plot of the percentage yield of the reactant at 200 fs after
excitation of the system. Here, the degree of yield control is maximum in the 0.2 < s < 0.8
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Figure 24. Keto and enol forms of 2-(2′-hydroxyphenyl)-oxazole. From figure 1, [126].

Figure 25. Contour plot of the percent reactant for bichromatic CC at 200 fs after photoexcitation
of 2-(2′-hydroxyphenyl)-oxazole. Here, θi ≡ φ(ωi), where φ(ωi) is the phase of the electric field,
of frequency ωi incident on the system. From figure 3, [126].

range, where the amount of the reactant can be reduced from more 80% to less than 40% by
changing the relative phase of the two incident lasers from 120˚ to 180˚ to 0˚.

The extent to which these results are significant is associated with the advent of intrinsic
decoherence experienced by the proton during the course of the dynamics. That is, if there is
little decoherence then the system is effectively a small molecule. To this end it is necessary
to introduce a quantitative measure of decoherence. One such popular measure [129, 130] is
Tr[ρ2

s (t)] where ρs(t) is the system density matrix. In this case, ρs would correspond to the
density matrix of the proton. If the initial-state is chosen to be a pure state then ρ2

s (0) = ρs(0)

and Tr[ρ2
s (0)] = 1. As the dynamics proceeds, and decoherence sets in, Tr[ρ2

s (t)] decays.
A computation on Tr[ρ2

s (t)] on this system shows decay to Tr[ρ2
s (t)] = 0.38 by 200 fs. Hence

decoherence is rapid and effective during the timescale of the control shown above.
Finally, we note studies of control in solution [131,132] indicate that control in the presence

of collisional effects is indeed possible. For example, CC of the dynamics of I−3 in ethanol and
acetonitrile has been demonstrated. Specifically, I−3 was excited with 30 fs UV laser pulse to
the first excited state. The resultant wavefunction was comprised of a localized wavefunction
on the ground electronic state and a corresponding depletion of wavefunction density, i.e. a
‘hole’, on the ground electronic state. In this instance, the target of the control was the nature
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of the spectrum associated with the coherences associated with the symmetric stretch. By
manipulating various attributes of the exciting pulse (intensity, frequency and chirp of the
excitation pulse) aspects of the spectrum were controlled, despite the decoherence associated
with collision effects.

9.3. Overcoming partial laser coherence

An alternate source of decoherence in CC experiments is in the nature of the laser used to
irradiate the system. Specifically, if the laser has random components then it inputs a degree of
randomness into the system, reducing the phase information content and hence decohering
the system. Methods for dealing with such decoherence effects are described elsewhere
([1, 133, 134] and see [135] and references therein). One of these approaches, incoherent
interference control is, however, worth noting. Specifically, figure 26 shows a level scheme
where a cw field with frequency ω1 excites the level |Ei〉 to the photodissociative continuum.
Simultaneously, a stronger cw laser field of frequency ω2 couples the continuum to the initially
empty state |Ej 〉. The phases associated with these two fields are φ1 and φ2, respectively. The
effect of the strong field is to cause Rabi cycling of population between |Ej 〉 and the continuum.
Thus, in this arrangement, population can be transferred from |Ei〉 to the continuum by a
variety of routes, as shown in figure 27. The method is the multi-channel generalization of
‘laser induced continuum structure’ (LICS) [136–140].

From the qualitative perturbation theory viewpoint, this scenario contains an infinite
number of contributions, some of which are shown in figure 27. The first panel of figure 27
shows the bichromatic control scenario. The second panel in figure 27 shows the simplest path
to the continuum, consisting of one-photon absorption of ω1. The subsequent panels show the

Figure 26. Sample scenario for the incoherent interference control of the photodissociation of Na2.
Taken from figure 1, [134].
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Figure 27. Interfering pathways from |Ei〉 to the continuum associated with the scenario in the
previous figure. The frequency and phase of the lasers are ωi and φi . (a) Bichromatic control.
(b) One-photon absorption. (c) A three-photon process in which the initially unpopulated state
|Ej 〉 is coupled to the continuum at energy E and interferes with the one-photon absorption from
state |Ei〉. (d) The same as in (c) for a five-photon process. Notice that in the processes depicted
in (c) and (d) the phase φ2 gets cancelled at the completion of each stimulated-emission-followed-
by-absorption cycle.

three-photon process to the continuum (absorption of ω1 followed by stimulated-emission and
re-absorption of ω2, etc), and a five-photon process (absorption of ω1 followed by stimulated-
emission and re-absorption of ω2, twice). This series goes on ad-infinitum, resulting in an
infinite number of interfering pathways.

In accord with standard perturbation theory, the phase imparted to the continuum state by
the first route in figure 27 is φ1, and by the second is φ1 − φ2 + φ2. The −φ2 contribution
to the latter phase is due to the stimulated-emission-step, and the following +φ2 is due to the
absorption. Hence, both routes impart the overall phase φ1 to the continuum state. It is clear
that this is also the case for all additional routes to the continuum, since they must contain an
equal number of stimulated-emission and absorption steps.

Examination of all previous described scenarios makes clear, however, that it is the relative
phase imparted to the routes which affects control. In the case described here, the relative phase
of the routes is φ1−φ1 = 0, so that control is independent of the laser phase. As a consequence,
even lasers with extreme laser jitter and drift can be used in this scenario. Note, however, the
additional consequence that in this scenario, control is achieved by varying the frequencies ω1

and ω2.
An experimental realization with the pulsed laser version of this approach has also been

demonstrated [135].

10. CC of the synthesis and purification of chiral molecules

One challenging application of CC is to the issue of separating mixtures of chiral molecules.
A molecule is said to be ‘chiral’ if it does not coincide, or cannot be made to coincide using
a simple rotation, with its mirror image. In such cases, the molecule and its mirror image are
called ‘enantiomers’, with one enantiomer being ‘right-handed’ and the other enantiomer being
‘left-handed’. A sufficient (though not necessary) condition for chirality is for the molecule to
have at least one ‘asymmetric’ carbon atom, i.e. a carbon atom bonded to four different groups
of atoms. Two enantiomers can be distinguished experimentally, for example, by their ability
to rotate linearly polarized light in opposite directions. A mixture of the two enantiomers is
called a ‘racemic’ mixture or a ‘racemate’.

The existence of enantiomers is one of the fundamental broken symmetries in nature
[141–144]. In this section, we explain how to use CC techniques to perform asymmetric
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synthesis ([145–149], [150], [155]) using the strong electric dipole–electric field interaction.
This is in sharp contrast with previous techniques ( [141] and see, e.g. [149]) where efforts
were made to use the far weaker magnetic dipole interaction terms.

10.1. Principles of electric dipole-allowed enantiomeric control

We begin by establishing the general conditions under which the electric–dipole
electromagnetic field interaction can be used to attain selective control over the population
of a desired enantiomer. Consider a molecule, described by the total Hamiltonian (including
electrons and nuclei) HMT. HMT is assumed to have eigenstates describing the L and D

enantiomers, denoted |Li〉 and |Di〉 (i = 1, 2, 3, . . . , ) that satisfy

I|Li〉 = −|Di〉, I|Di〉 = −|Li〉, (143)

where I is the operator that inverts all space fixed coordinates through the origin. Note that
the choice of phase (here minus one) in equation (143) is arbitrary, and that neither |Li〉 nor
|Di〉 have well defined parity since they are not eigenstates of I.

The dipole interaction of this molecule with an incident time dependent electric field E(t)

is described by the Hamiltonian:

H(E) = HMT − d · E. (144)

Here, d is the total dipole operator, including both electron and nuclear contributions, and we
have explicitly indicated the dependence of the Hamiltonian on the electric field. Consider
now the effect of inversion on H . Noting that I operates on the coordinates of the molecule,
that I† = I and that [HMT, I] = 0, we have [152] that

IH(E)I = H(−E), (145)

where H(−E) = HMT + d · E. Further, if we define U(E) and U(−E) as the propagators
corresponding to dynamics under H(E) and H(−E), respectively, then

U(E)I = IU(−E). (146)

Consider now irradiating a racemic mixture of D and L in its ground electronic state with
an electric field E and examine the difference δ between the amount of D and L formed. We
consider first the coherent process using transform limited light in the absence of collisions.
Then, the difference δ is given by

δ =
∑

i

Pi

∑
j

[|〈Dj |U(E)|Di〉|2 + |〈Dj |U(E)|Li〉|2] − [|〈Lj |U(E)|Di〉|2

+ |〈Lj |U(E)|Li〉|2], (147)

where Pi is the probability of state |Li〉 and |Di〉 in the initial mixed state. (If the initial-state
is a racemic mixture, the states |Li〉 and |Di〉 appear with equal probability.)

To determine the conditions under which δ is non-zero, we rewrite equation (147) as

δ =
∑

i

Pi

∑
j

[|〈Dj |U(E)|Di〉|2 − |〈Lj |U(E)|Li〉|2] + [|〈Dj |U(E)|Li〉|2

− |〈LjU |(E)|Di〉|2] (148)

and recast the second and third terms using:

|〈Lj |U(E)|Li〉|2 = |〈Dj |I†U(E)I|Di〉|2 = |〈Dj |U(−E)|Di〉|2
|〈Dj |U(E)|Li〉|2 = |〈Dj |U(E)I|Di〉|2 = |〈Dj |IU(−E)|Di〉|2 = |〈Lj |U(−E)|Di〉|2

(149)
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giving

δ =
∑

i

Pi

∑
k

[|〈Dk|U(E)|Di〉|2 − |〈Dk|U(−E)|Di〉|2]

+ [|〈Lk|U(−E)|Di〉|2 − |〈Lk|U(E)|Di〉|2]. (150)

Equation (150) provides the general condition under which electric fields, assuming a
dipole interaction, can break the right/left symmetry of the initial-state, and result in enhanced
production of a desired enantiomer. Specifically, the difference between the amount of D

and L formed is seen to depend entirely on the difference between the molecular dynamics
when irradiated by E and by −E. Hence, we can state that a necessary condition for non-
zero enantiomeric excess, and the breaking of the left–right symmetry, is that the dynamics
depend on the sign of the electric field. Note that the fact that molecular dynamics can,
as discussed in previous sections, depend on the phase of the incident electric field is well
substantiated [153, 154], but its utility for asymmetric synthesis is only evident from this
result. Finally, note that the result is completely consistent with symmetry based arguments
that can usefully provide conditions under which δ must equal zero. For example, a racemic
mixture of thermally equilibrated molecules is rotationally invariant. Hence, any rotation that
converts E to −E could not, in this case, result in enantiomeric control. In particular, in this
case the sum over MJ (where MJ is the component of the reactant’s total angular momentum
along the direction of laser polarization) implicit in the sum over Pi in equation (150) would
result in δ = 0. By contrast, as discussed below, a racemic mixture of MJ polarized molecules
irradiated with linearly polarized light [155] gives non-zero δ. New δ �= 0 examples emanating
from equation (150) are also expected to display similar non-traditional characteristics.

Both qualitative and quantitative applications of equation (150) are possible. Qualitatively,
for example, a traditional scheme where the ground electronic state of L and D are incoherently
excited to bound levels of an excited state, gives δ = 0. This is because all processes
connecting the initial and final |Li〉 and |Di〉 states, i.e. contributions to the matrix elements
in equation (150), are even in the power of the electric field. Hence, propagation under E
and −E are identical. By contrast, consider the four level model scheme of figure 28 that is

Figure 28. The ‘laser distillation’ control scenario discussed in detail in section 10.3. Two lasers,
with pulse envelopes ε1(t) and ε2(t) couple, by virtue of the dipole operator, the states of the D

and L enantiomers to two vib-rotational states |1〉 and |2〉 (denoted |E1〉 and |E2〉 in the text) in
the excited electronic manifold. A third laser pulse with envelope ε0(t) couples the excited |E1〉
and |E2〉 states to one another. The system is allowed to absorb a photon and relax back to the
ground state. After many such ‘excitation–relaxation’ cycles, a significant enantiomeric excess is
obtained, as explained in section 10.3.
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discussed in detail in section 10.3. When ε0(t) �= 0 there exist processes connecting the initial
and final |L〉 and |D〉 states that are of the form |L〉 → |1〉 → |2〉 → |D〉 and hence there
are terms in equation (150) that are odd in the power of the electric field. One therefore
anticipates the possibility of altering the enantiomeric excess using this combination of pulses,
providing the basis for the control results reported later. Further, if ε0 = 0 then the situation
reverts to the case discussed above, where only processes even in the electric field contribute to
transitions between the initial |D〉, |L〉 and final |D〉, |L〉 transitions, and hence control over the
enantiomeric excess is lost. For this reason, the ε0(t) coupling laser is crucial to enantiomeric
control. This qualitative picture is substantiated quantitatively, later (section 10.3).

10.2. Symmetry breaking in the two-photon dissociation of pure states

Consider a molecule of the type BAB ′ where B and B ′ are enantiomers. This molecule
possesses a hyper-plane of symmetry σ defined as the set of all configurations in which the
B − A distance is equal to the A − B ′ distance. The operator corresponding to reflection
across this hyper-plane is denoted σh. In order to coherently control the dissociation of this
system, we take advantage of the existence of degenerate continuum states that do not possess
this reflection symmetry. That is, the BAB ′ molecules possess degenerate continuum states
|E, n, D−〉 and |E, n, L−〉 that correlate asymptotically with the dissociation of the right B ′

group and left B group, respectively. The collective quantum index n in the states |E, n, D−〉
and |E, n, L−〉 includes MJ , the magnetic quantum number of the B or B ′ fragment. These
states are neither symmetric nor anti-symmetric with respect to the reflection operator σh,
although linear combinations of these states might possess this symmetry.

We now consider using the pump-dump scenario described in section 6 above, for BAB ′

photodissociation. The application of this scenario to the chiral synthesis case is depicted
schematically in figure 29. Our aim is to control the relative yield of two product arrangement
channels. That is, we consider Pq,n(E), with q labelling either the right (q = D) or left
(q = L) handed product. As in section 6, the product ratio RDL;n = PD,n(E)/PL,n(E) is a

Figure 29. A schematic showing the controlled dissociation of the molecule B − A − B ′ to yield
the B − A + B ′ or the B + A − B ′ products, where B and B ′ are two enantiomers. The molecule is
excited from an initial-state |E1〉 to a superposition of antisymmetric (|E2〉) and symmetric (|E3〉)
vibrational states belonging to an excited electronic state, by an excitation pulse εx(t). After an
appropriate delay time the molecule is dissociated by a second pulse εd (t), to the |E, n, D−〉 or
|E, n, L−〉 continuum state.
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Figure 30. The emergence of an antisymmetric dipole component da in addition to the symmetric
component ds in a bent BAB ′ triatomic molecule as a result of an asymmetric stretching vibration,
assuming that the dipole is a vectorial sum of bond dipoles that are proportional to the bond lengths.

function of the delay time �d = (td − tx) between pulses and the ratio x = |c2/c3|, the latter by
varying the energy of the initial excitation pulse. Active control over the products B + AB ′ vs
B ′ + AB, i.e. a variation of RDL;n with �d and x, and hence control over left- vs right-handed
products, will result only if PD,n(E) and PL,n(E) have different functional dependences on
the control parameters x and �d .

To show that PD,n(E) may differ from PL,n(E) for the B ′AB case, note first that this
molecule belongs to the Cs point group. This group possesses only one symmetry element
that is the σh reflection in the σ hyper-plane. Furthermore, we focus upon transitions between
electronic states of the same representations, e.g. A′ to A′ or A′′ to A′′ (where A′ denotes
the symmetric representation and A′′ the antisymmetric representation of the Cs group). We
further assume that the ground vibronic state belongs to the A′ representation.

To obtain control, we choose the intermediate state |E3〉 to be symmetric, and the interme-
diate state |E2〉 to be antisymmetric, with respect to σh. Hence, we must first demonstrate that
it is possible to optically excite, simultaneously, both the symmetric |E3〉 and antisymmetric
|E2〉 states from the ground state |E1〉. Using equation (83) we see that this requires the ex-
istence of both a symmetric dipole component, denoted ds , and an antisymmetric component,
denoted da , with respect to σh, because, by the symmetry properties of |E3〉 and |E2〉,

〈E3|d · ε̂|E1〉 = 〈E3|ds · ε̂|E1〉, 〈E2|d · ε̂|E1〉 = 〈E2|da · ε̂|E1〉. (151)

Since the σ plane rotates with the molecule, the σh operation is said to be ‘body-fixed’
(or ‘molecule-fixed’). Both the body-fixed symmetric ds and the body-fixed antisymmetric
da dipole-moment components do occur in A′ → A′ electronic transitions whenever the
bent B ′ − A − B molecule deviates considerably from the σ hyper-plane where da = 0
(see figure 30). The deviation of da from zero on the σ plane necessitates going beyond the
Franck–Condon approximation, which assumes that the electronic dipole moment does not
change as the molecule vibrates. (In the terminology of the theory of vibronic-transitions both
symmetric and antisymmetric components can be non-zero due to a Herzberg–Teller intensity
borrowing [156] mechanism.)

Note also that the dipole-moment operator, being a vector, must invert its sign under
inversion I. Hence, with respect to I, the dipole-moment is always antisymmetric. Thus, for
the integrals in equation (151) to be non-zero also requires that |E3〉 and |E1〉 be of opposite
symmetry with respect to inversion. Given the extant conditions on the behaviour of |E3〉 and
|E1〉 with respect to the reflection σh, the symmetry requirements with respect to I are most
easily accommodated through the rotational components of the |E3〉 and |E1〉 states.

Thus, the excitation pulse can create a superposition of |E2〉, |E3〉 consisting of two-states
of different reflection symmetry. The resultant superposition possesses no symmetry properties
with respect to reflection (see also [157]8).

8 On the preparation and measurement of a superposition of chiral states see also [157].
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We now show that the non-symmetry created by this excitation of non-degenerate
bound states translates into a non-symmetry in the probability of populating the degenerate
|E, n, D−〉, |E, n, L−〉 continuum states upon subsequent excitation. To do so, we examine
the properties of the bound-free transition matrix elements 〈E, n, q−|de,g|Ek〉 that enter
into the probability of dissociation (equation (85)). Note first that although the continuum
states |E, n, q−〉 are non-symmetric with respect to reflection, we can define symmetric and
antisymmetric continuum eigenfunctions |E, n, s−〉 and |E, n, a−〉 via the relations

|E, n, D−〉 ≡ [|E, n, s−〉 + |E, n, a−〉]√
2

, (152)

|E, n, L−〉 ≡ [|E, n, s−〉 − |E, n, a−〉]√
2

, (153)

using the fact that σh|E, n, D−〉 = |E, n, L−〉.
Consider first the nature of the dq(ij) that enter equation (87), prior to averaging over

product scattering angles, and denoted dq(ij ; k̂), where k̂ is the scattering direction. Since |E3〉
is symmetric and |E2〉 is antisymmetric, and adopting the notation As2 ≡ 〈E, n, s−|da|E2〉,
Sa3 ≡ 〈E, n, a−|ds |E3〉, etc we have (see equation (87))

dq(33; k̂) =
∑ ′′[|Ss3|2 + |Aa3|2 ± 2Re(Aa3S

∗
s3)],

dq(22; k̂) =
∑ ′′[|As2|2 + |Sa2|2 ± 2Re(As2S

∗
a2)],

dq(32; k̂) =
∑ ′′[Ss3A

∗
s2 + Aa3S

∗
a2 ± Ss3S

∗
a2 ± Aa3A

∗
s2],

(154)

where the plus sign applies for q = D, the minus sign applies for q = L, and dq(23; k̂) =
d∗

q(32; k̂). The double prime on the sum denotes a summation over all q, n other than the
scattering angles and the product MJ , where MJ denotes the projection of the product angular
momentum along the axis of laser polarization.

Equation (154) takes on a simpler form after angular averaging. The reason for this is that
the overall parity of a state with respect to the inversion operation, I, must change upon photon
absorption since a photon has odd parity. As a result, if we have a single photon absorption
process in which the parity of a vibrational state is unchanged, then the parity of the rotational
states must change, and vice versa. Close examination of equation (154) reveals that the S∗

s3
term does not involve a change in the parity of the vibrational state, whereas the Aa3 term
does. As a result, the rotational wavefunctions associated with each term must have opposing
parities and the angular integral of the product must vanish. The same goes for the As2S

∗
a2

term. In a similar manner the Ss3A
∗
s2 + Aa3S

∗
a2 term vanishes in the dq(32) interference term.

By contrast, the ±Ss3S
∗
a2 ± Aa3A

∗
s2 terms do not vanish upon angular integration since they

correspond to final rotational states that have the same parity.
As a consequence, the net result is that, after angular averaging, equation (154) becomes

dq(33) =
∑ ′[|Ss3|2 + |Aa3|2],

dq(22) =
∑ ′[|As2|2 + |Sa2|2],

dq(32) =
∑ ′ ± [Ss3S

∗
a2 + Aa3A

∗
s2],

(155)

where single prime on the sum indicates that the sum over product MJ is not carried out.
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av

Figure 31. Contour plot of percent HO + H (as distinct from HO + H) in HOH photodissociation.
Ordinate is the detuning from Eav = (E3 − E2)/2 and the abscissa is the time delay between
pulses. Taken from figure 9, [14].

These equations display two noteworthy features:

(1) dL(jj) = dD(jj), j = 2, 3, i.e. lacking interference, no discrimination between the left-
and right-handed products is possible.

(2) dL(23) �= dD(23), i.e. laser controlled symmetry breaking, which depends upon dq(23)

in accordance with equation (86), is possible. As noted below, this type of discrimination
is possible only if we select of the direction of the angular momentum of the products
(MJ -polarization).

To demonstrate the extent of expected control, as well as the effect of MJ summation, we
considered a model of enantiomer selectivity, i.e. HOH photodissociation in three dimensions,
where the two hydrogens are assumed distinguishable,

HaO + Hb ← HaOHb → Ha + OHb.

A computation of the RDL ratio of the HO + H (as distinct from the HO + H) product
in a fixed MJ state, was performed using the formulation and methodology of [158, 159].
Specifically, figure 31 shows the result of first exciting the superposition of symmetric plus
asymmetric vibrational modes [(1, 0, 0) + (0, 0, 1)] with Ji = Jk = 0 in the ground electronic
state, followed by dissociation at 70 700 cm−1 to the B state using a pulse width of 200 cm−1.
The results show that varying the time delay between pulses allows for controlled variation
of PD from 61% to 39%. This variation is significant since it reveals the symmetry breaking
arising within this scenario.

10.3. Purification of racemic mixtures by ‘laser distillation’

In section 10.2, we dealt with chiral discrimination given an initial pure achiral state. However,
in practice, the initial-state is in general a (racemic) mixture of the two enantiomers. If we
were to use the scenario of section 10.2 to attempt chiral discrimination of a racemic mixture
one would have to first prepare the BAB ′ adduct in a pure state. Since the preparation of
BAB ′, and especially its separation from the BAB and B ′AB ′ adducts that would inevitably
accompany it, is not a trivial task, it is preferable to find control methods that can separate
the B and B ′ racemic mixture directly. In this section, we outline a method that can achieve
this much more ambitious task. The essential principles of this method remain the same as
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in section 10.2, i.e. excitation of a superposition of symmetric and antisymmetric states with
respect to σh, the reflection operation.

Consider then a molecular system composed of a pair of stable nuclear configurations,
denoted L and D, with L being the (distinguishable) mirror image of D. Note that the
electronic Hamiltonian He commutes with σh, hence, the potential energy surfaces, which
are the eigenvalues of the electronic Schrödinger equation at all nuclear configurations, must
be symmetric with respect to σh. Since L and D are assumed stable, it follows that the
ground potential energy surface must possess a sufficiently high barrier at nuclear coordinates
separating L and D such that the rate of interconversion between them by tunnelling is
negligible. By contrast, L and D need not be stable on an excited potential energy surface. To
this end, we assume that there is at least one excited potential surface, denoted G, which
possesses a potential well midway between the L and the D geometries (see figure 28).
(A number of molecules expected to be of this type are tabulated in [144] and a number
of examples are discussed below). Hence, the interconversion between L and D on the excited
surface G is expected to be very facile.

A direct consequence of the potential well midway between the L and the D geometries is
the existence of stable vibrational eigenstates on the excited surface. Because of the symmetry
of G, the vibrational eigenstates must be either symmetric or antisymmetric with respect to σh.

The procedure that we propose in order to enhance the concentration of a particular
enantiomer when starting with a racemic mixture, i.e. to ‘purify’ the mixture, is as follows.
The racemic mixture of L and D is irradiated with a specific sequence of three coherent laser
pulses, as described below. These pulses excite a coherent superposition of symmetric and
antisymmetric vibrational states of G. After each pulse the excited system is allowed to relax
back to the ground electronic state by spontaneous emission or by a non-radiative process. By
allowing the system to go through many irradiation and relaxation cycles, we show below that
the concentration of the selected enantiomer L or D can be enhanced, depending on the laser
characteristics. We call this scenario ‘laser distillation’ of chiral enantiomers.

We note at the outset that detailed angular momentum considerations show that if the three
incident lasers are of the same polarization then control results only if we do not average over
MJ , the projection of the total angular momentum of the reactant along the z-axis (chosen as
the direction of laser polarization). In particular, enantiomeric enhancement of one enantiomer
from molecules in state MJ is exactly counterbalanced by enantiomeric enhancement of the
other enantiomer by molecules in state −|MJ |. Hence, enantiomeric control in this scenario
requires prior MJ selection of the molecules. This scenario is discussed below, but results are
also provided for the case of three lasers of perpendicular polarization, where MJ averaging
is non-destructive.

Consider then a molecule with Hamiltonian HM , in the presence of a series of laser pulses.
(In general, we may deal with lasers that are not fully coherent, but for simplicity we focus
here on transform limited pulses of linearly polarized light.) The treatment is in accord with
section 2, equation (3), where the interaction between the molecule and radiation is given by

HMR(t) = −d · E(t) = −2d ·
∑

k

Re[ε̂kεk(t) exp(−iωkt)]. (156)

Here, εk(t) is the pulse envelope, ωk is the central laser frequency and ε̂k is the polarization
direction. Expanding |�(t)〉 in eigenstates |Ej 〉 of the molecular Hamiltonian we obtain the
coupled first order differential equations of equation (7).

We now specialize the treatment to a four state model, composed of the D and L molecules
in their ground electronic states and in vib-rotational states |ED〉 and |EL〉, of energy ED = EL,
being excited by two light fields to two eigenstates |E1〉 and |E2〉 of the electronically excited
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potential surface G. The states |E1〉 and |E2〉 are also coupled by an additional laser field (see
figure 28). Specifically, we choose E(t) to be composed of three linearly polarized light pulses
(all of the same polarization),

E(t) =
∑

k=0,1,2

2Re[εk(t) exp(−iωkt)]ε̂k (157)

with ω0 in near-resonance with ω2,1 ≡ (E2 − E1)/h̄, ω1 is chosen to be near resonant with
ω1,D ≡ (E1 − ED)/h̄, and ω2 near resonant with ω2,D ≡ (E2 − ED)/h̄ (see figure 28). In this
case, only four molecular states are relevant and the wavefunction can be expanded as:

|�〉 = bD(t) exp

(
− iEDt

h̄

)
|ED〉 + bL(t) exp

(
− iELt

h̄

)
|EL〉 + b1(t) exp

(
− iE1t

h̄

)
|E1〉

+ b2(t) exp

(
− iE2t

h̄

)
|E2〉. (158)

Inserting this expansion into the time dependent Schrod̈inger equation, and invoking the
rotating-wave approximation, gives us the following set of equation for the coefficients:

ḃ1 = i exp(i�1t)[�
∗
D,1bD + �∗

L,1bL] + i exp(−i�0t)�
∗
0b2,

ḃ2 = i exp(i�2t)[�
∗
D,2bD + �∗

L,2bL] + i exp(i�0t)�0b1,

ḃD = i exp(−i�1t)�D,1b1 + i exp(−i�2t)�D,2b2,

ḃL = i exp(−i�1t)�L,1b1 + i exp(−i�2t)�L,2b2,

(159)

where �i,j (t) ≡ d
(j)

i,j ε1(t)/h̄, �0 ≡ d
(0)
2,1ε0(t)/h̄, �j ≡ ωj,D − ω1, �0 ≡ ω2,1 − ω0, where

d
(k)
i,j ≡ 〈Ei |d · ε̂k|Ej 〉, with i = D, L; k = 0, 1, 2 and j = 1, 2.

The essence of the laser distillation process lies in choosing the laser of central frequency
ω1 so that it excites the system to a state |E1〉 that is symmetric with respect to the reflection
operation σh, and to a state |E2〉 that is antisymmetric with respect to σh. By contrast, |ED〉
and |EL〉 do not share these symmetries but are related to one another through reflection (i.e.
σh|ED〉 = |EL〉, σh|EL〉 = |ED〉 whereas σh|E1〉 = |E1〉, σh|E2〉 = −|E2〉).

To consider the nature of the ‘Rabi frequencies’ � in equation (159) we rewrite |ED〉 and
|EL〉 in terms of a symmetric state |S〉 and an antisymmetric state |A〉:

|ED〉 = |A〉 + |S〉,
|EL〉 = |A〉 − |S〉.

(160)

In addition to their symmetry properties with respect to σh, we choose the |S〉 and |A〉 states to
be, respectively, symmetric and antisymmetric under the inversion operation I. Coupled with
the fact that the dipole operator must be antisymmetric with respect to I, the relevant matrix
elements satisfy the following relations:

〈1|d(1)|D〉 = 〈1|d(1)|A + S〉 = 〈1|d(1)|A〉,
〈1|d(1)|L〉 = 〈1|d(1)|A − S〉 = 〈1|d(1)|A〉,
〈2|d(2)|D〉 = 〈2|d(2)|A + S〉 = 〈2|d(2)|S〉,
〈2|d(2)|L〉 = 〈2|d(2)|A − S〉 = −〈2|d(2)|S〉.

(161)

That is,

�D,1 = �L,1, �D,2 = −�L,2. (162)
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Given equations (162) and (159) becomes

ḃ1 = i exp(i�1t)�
∗
D,1[bD + bL] + i exp(−i�0t)�

∗
0b2,

ḃ2 = i exp(i�2t)�
∗
D,2[bD − bL] + i exp(i�0t)�0b1,

ḃD = i exp(−i�1t)�D,1b1 + i exp(−i�2t)�D,2b2,

ḃL = i exp(−i�1t)�D,1b1 − i exp(−i�2t)�D,2b2.

(163)

The essence of optically controlled enantioselectivity in this scenario lies in equation (162)
and the effect of these relationships on the dynamical equations for the level populations
(equation (163)). Note specifically that the equation for ḃD(t) is different than the equation for
ḃL(t), due to the sign difference in the last term in equation (163). Although not sufficient to
ensure enantiomeric selectivity, the ultimate consequence of this difference is that populations
of |ED〉 and |EL〉 after laser excitation are different when there is radiative coupling between
levels |E1〉 and |E2〉.

Note, in accord with section 10.1, the behaviour of equation (163) under the transformation
E → −E. Specifically, changing E to −E means changing all εj (t) to −εj (t). Doing so, and
defining b′

1 = −b1 and b′
2 = −b2 converts equation (163) into

ḃ′
1 = i exp(i�1t)�

∗
D,1[bD + bL] − i exp(i�0t)�

∗
0b

′
2,

ḃ′
2 = i exp(i�2t)�

∗
D,2[bD − bL] − i exp(−i�0t)�0b

′
1,

ḃD = i exp(−i�1t)�D,1b
′
1 + i exp(−i�2t)�D,2b

′
2,

ḃL = i exp(−i�1t)�D,1b
′
1 − i exp(−i�2t)�D,2b

′
2.

(164)

Clearly, equation (164) is the same as equation (163) barring the change of sign in the �0

terms. Thus, the solution to equation (163) depends on the sign of E when ε0 �= 0. Hence, by
the argument in section 10.1, this scenario allows for chirality control when ε0(t) �= 0. For
ε0(t) = 0 the equation (164) is the same as equation (163) so that enantiomer control is not
possible.

To obtain quantitative estimates for the extent of obtainable control we consider results
for model cases assuming Gaussian pulses

εk(t) = Ek exp

[
−
(

(t − tk)

αk

)2
]

k = 0, 1, 2 (165)

and system parameters 〈1|d(1)|D〉 = 〈1|d(1)|L〉 = 〈2|d(2)|L〉 = −〈2|d(2)|D〉 = 1 a.u.,
〈1|d(0)|2〉 = 1 a.u., ω2,1 = 100 cm−1 and �0 = 0. Figure 32 displays the final probabilities
PD = |bD(∞)|2, PL = |bL(∞)|2 of population in |ED〉 and |EL〉, after a single pulse, for a
variety of pulse parameters. Results are shown for various values of �1 at various different
pulse powers assuming that one starts solely with D, solely with L, or with a racemic mixture
of both enantiomers. Clearly, for particular parameters, one can significantly enhance the
population of one chiral enantiomer over the other. For example, for �1 = −115 cm−1,
E0 = E1 = 4.5 × 10−4, a racemic mixture of D and L can be converted, after a single pulse,
to a enantiomerically enriched mixture with predominantly D.

Control is strongly affected by the relative phase θ of the ε1 and ε0 fields, as shown in
figure 33. Here, it is clear that changing θ by π interchanges the dynamical evolution of the L

and D enantiomers.
Although not immediately obvious, this control scenario relies entirely upon quantum

interference effects. To see this note that in the absence of an ε0(t) pulse, excitation from |D〉
or |L〉 to level |Ei〉, for example, occurs via one-photon excitation with εi(t), i = 1, 2. In
this case, as noted above, there is no chiral control. By contrast, with non-zero ε0(t), there is
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(1) (2) (3)

Figure 32. Probabilities of populating the |ED〉 (——) and |EL〉 (— · —) after laser excitation, but
prior to relaxation, as a function of the detuning �1. Three different cases are shown, corresponding
to three different initial conditions: (1) only state |EL〉 is initially populated; (2) only state |ED〉 is
initially populated; (3) a statistical mixture made up of equal shares of the |ED〉 and |EL〉 states
is initially populated. Results are shown for five different E1 = E0 ≡ E laser peak electric fields,
where Gaussian pulses are assumed with α0 = α1 = 0.15 ps, and t0 = t1.

an additional (interfering) route to |Ei〉, i.e. a two-photon route using εj (t) excitation to level
|Ej 〉, j �= i, followed by an ε0(t) induced transition from |Ej 〉 to |Ei〉. The one and two-photon
routes interfere and, as implied in section 5.2, allow for symmetry breaking transitions.

The computation, that results in figure 32, which gives the result of a single pulse, provides
input into a calculation of the overall result. In the overall process, we begin with an incoherent
mixture of ND molecules of type D and NL molecules of type L. In the first step the system is
excited, as above, with a laser pulse sequence. In the second step, the system collisionally and
radiatively relaxes so that all the population returns to the ground state to produce an incoherent
mixture of |EL〉 and |ED〉. This pair of steps is then repeated until the populations of |EL〉 and
|ED〉 reach convergence.

To obtain the result computationally note that the population after laser excitation, but
before relaxation, consists of the weighted sum of the results of two computations: ND times
the results of laser excitation starting solely with molecules in |ED〉, plus NL times the results
of laser excitation starting solely with molecules in |EL〉. If PD←D and PL←D denote the
probabilities of |ED〉 and |EL〉 resulting from laser excitation assuming the first of these initial
conditions, and PD←L and PL←L for the results of excitation following from the second of
these initial conditions, then the populations of |ED〉 and |EL〉 after laser excitation of the
mixture are NDPD←D + NLPD←L and NDPL←D + NLPL←L, respectively. The remainder
of the population, ND [1 − PD←D − PL←D] + NL [1 − PD←L − PL←L], is in the upper two
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S S

Figure 33. The time evolution of the enantiomeric populations for two different relative phases θ

between the ε1 and ε0 beams. (——) population in the D or L enantiomer; (· · · · · ·) the ε1(t) and
ε0(t) laser pulses; (- - - -) excited state population in levels |E1〉 + |E2〉.

levels |E1〉 and |E2〉. Relaxation from levels |E1〉 and |E2〉 then follows, with the excited
population dividing itself equally between |ED〉 and |EL〉. The resultant populations ND and
NL in ground state |ED〉 and |EL〉 is then:

ND = 0.5ND[1 + PD←D − PL←D] + 0.5NL[1 + PD←L − PL←L],

NL = 0.5ND[1 + PL←D − PD←D] + 0.5NL[1 + PL←L − PD←L].
(166)

The sequence of laser excitation followed by collisional relaxation and radiative emission is
then iterated to convergence. In the second step, for example, the populations in equation (166)
are taken as the initial populations for two independent computations, one assuming a
population of ND in |ED〉, with |EL〉 unpopulated, and the second assuming a population
of NL in |EL〉, with |ED〉 unpopulated.

Clearly, convergence is obtained when the populations, post-relaxation, are the same as
those prior to laser excitation, i.e. when ND = ND , and NL = NL. These conditions reduce to

ND(1 − PD←D + PL←D) = NL(1 + PD←L − PL←L). (167)

If the total population is chosen to be normalized (ND + NL = 1), then the final probabilities
PD, PL of populating states |ED〉 and |EL〉 are

PD = 1 + PD←L − PL←L

2 − PD←D + PL←D + PD←L − PL←L

,

PL = 1 − PD←D + PL←D

2 − PD←D + PL←D + PD←D − PL←L

(168)

and the equilibrium enantiomeric branching ratio is simply,

RD,L ≡ PD

PL

= 1 + PD←L − PL←L

1 − PD←D + PL←D

. (169)
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Figure 34. Results for laser distillation after a convergent series of steps comprised of radiative
excitation, followed by collisional and radiative relaxation. Shown are the results at three different
field strengths.

Results for the converged probabilities for the cases depicted in figure 32, are shown in figure 34.
The results clearly show substantially enhanced enantiomeric ratios at various choices of
control parameters. For example, at E0 = E1 = 1.5 × 10−3, tuning �1 to 50 cm−1 gives a
preponderance of L whereas tuning to the �1 = −125 cm−1 gives more D.

Numerous other parameters in this system, such as the pulse shape, time delay between
pulses, pulse frequencies and pulse powers, etc. can be varied to affect the final L to D

ratio [146] resulting in a very versatile approach to asymmetric synthesis.
Finally, note that although we have only included two ground state levels, the method

applies equally well when a large number of ground state levels are included. In this case,
relaxation will be amongst all of these ground state levels, but the proposed scenario, tuned
to the above set of transitions, will ‘bleed’ population from one MJ level of the desired
enantiomer. As relaxation refills this level it will continue to be pumped over to the other
enantiomer, with the overall effect that the major amount of the population will be transferred
from one enantiomer to the other.

As a realization of the above scheme we now examine [160] the case of enantiomer control
in dimethylallene, a molecule shown in figure 35. Note that, at equilibrium in the ground state,
the H–C–CH3 groups at both ends of the molecule lie on planes that are perpendicular to
one another, resulting a molecule that is chiral. By contrast, in the excited state, the C=C
double bond breaks, allowing for rotation of one plane relative to the other. Cuts through the
ground and first two excited state potential energy surfaces for this molecule along the α and
θ coordinates (see figure 35) are shown in figure 36. The potentials show the features required
for control in this scenario, i.e. a minimum in the excited state potential surface at the geometry
corresponding to the potential energy maximum on the ground state potential.

The results of a computation [147] on the control of L vs D 1,3-dimethylallene are
shown in figure 37. Outstanding enantiomeric control over the dimethylallene enantiomers is
evident for a wide variety of powers. For example, a most impressive result is achieved for
�1 = 0.0986 cm−1 and E0 = 1.5 × 10−4 a.u., E1 = E2 = 4.31 × 10−5 a.u., corresponding
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Figure 35. The geometry of the 1,3-dimethylallene and the two angles θ and α that were varied
to scan the potential energy surface. Here θ is the dihedral angle between the H3C–C=C and the
C=C–CH3 planes and α is the C–C–C bending angle, here shown by an arrow that brings the
H3C–C–H out of the plane of paper. From figure 2, [160].

to laser powers of 7.90 × 108 W cm−2 and 6.52 × 107 W cm−2, respectively. Here, a racemic
mixture of dimethylallene in a specific J, MJ , λ state can be converted, after a series of
pulses, to a mixture of dimethylallene, containing 92.7% of the D-dimethylallene in this
state. (Here λ is the projection of the total angular momentum J along an axis fixed in the
molecule.) Similarly, detuning to �1 = −0.0986 cm−1 results in a similar enhancement of
L-dimethylallene. Slightly lower extremes of control are seen to be achievable for the two other
laser powers shown. Further, control was achievable to field strengths down to 104 W cm−2.
Note, however, that this computation neglects the competitive process of internal conversion,
discussed later.

It is of some interest to note the character of the eigenstates |E1〉 and |E2〉 that contribute to
these results; they are shown in figure 38. Clearly, they are states with considerable vibrational
energy, so that they are broad enough in configuration space to overlap the ground electronic
state, ground vibrational state wavefunctions. If this is not the case then the dipole matrix
elements are too small to allow control at reasonable laser intensities.

The primary experimental difficulty associated with this scenario is the requirement to
isolate a particular subset of MJ levels, in order to avoid cancellation of MJ and −|MJ |
control. That is, from the viewpoint of the MJ structure, this scenario is associated with the
level structure shown in figure 39.

To remove this restriction, we introduced another scenario [155] where all of the three
laser polarizations, ε̂0 , ε̂1 and ε̂2, are perpendicular to one another. This laser arrangement
now allows for transitions between different MJ levels. The first few of these levels is shown
in figure 40. Under these circumstances, control survives averaging over MJ levels [155].

Sample results for the three laser case with perpendicular polarizations are shown in
figure 41, first row, where extensive control is evident. Here, even with MJ averaging, one can
choose to convert the racemic mixture to over 90% of the L enantiomer, or of the D enantiomer,
depending on the detuning. In this case, the 1,3-dimethylallene was treated as an asymmetric
top and averaging was carried out over all MJ levels.

A realistic model of dimethylallene control must also recognize the possibility of internal
conversion to the ground state. In this process, the electronically excited molecule undergoes
a radiationless transition to the ground electronic state, leaving a highly vibrationally excited
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Figure 36. Potential energy surfaces for 1,3-dimethylallene. Here, we show in-plane surfaces for
the ground and first two excited electronic states. From figure 4, [160].

species. Only a few estimates or measurements of the internal conversion timescales for
molecules are available [161, 162] and dimethylallene has not been explored. Further,
after internal conversion one expects, in the dimethylallene case, that the excited molecule
subsequently dissociates, leaving molecular fragments that no longer participate in the control
scenario. Hence, the process of internal conversion serves as a decoherence mechanism that
can reduce control. Further decoherence effects, but on a slower timescale, would arise, for
example, if the control was carried out in solution.

The second row in figure 41 shows control with similar parameters as in the first row, but in
the presence of a T2 associated with decoherence chosen arbitrarily as 10 ps. Clearly, almost all
of the control is lost. However, if the laser parameters are changed to those shown on the right-
hand side of the figure, bottom-most column, then significant control is restored once again.
In this case, however, the process occurs with the loss of considerable reactant population to
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Figure 37. Control over dimethylallene enantiomer populations as a function of the detuning �1
for various laser powers. The first column corresponds to probabilities of L (— · —) and D (——)
after a single laser pulse, assuming that the initial-state is all L. The second column is similar, but
for an initial-state that is all D. The rightmost column corresponds to the probabilities L and D

after repeated excitation–relaxation cycles, as describe in the text. This is a corrected version of
figure 2, [147].

dissociated dimethylallene. Additional studies designed to establish the relationship between
the laser requirements for control, and the internal conversion rates, is in progress at the time
of writing [163]. The possibility of alternate substituents to replace the hydrogens is also of
interest, as is the effect of changes to molecular structure to alter the radiative lifetime, the
internal conversion rates, etc.

Enantiomeric control is more difficult if the excited molecular potential energy surfaces
do not posses an appropriate minimum at the σh hyper-plane configurations (see figure 28).
In this case, the method introduced in this subsection is not applicable. One may however
be able to apply the laser distillation procedure by adding a molecule B to the initial L, D

mixture to form weakly bound L−B and B −D, which are themselves right- and left-handed
enantiomeric pairs [164]. The molecule B is chosen so that electronic excitation of B − D

and L − B forms an excited species G that has stationary ro-vibrational states that are either
symmetric or antisymmetric with respect to reflection through σh. The species L−B and B−D

now serve as the L and D enantiomers in the general scenario above and the laser distillation
procedure described above then applies. Further, the molecule B serves as a catalyst that may
be removed from the final product by traditional chemical means.

For example, L and D might be the left- and right-handed enantiomers of a chiral alcohol,
and B is the ketone derived from this alcohol (see figure 42). In this case, studies [164] of
the electronic structure of the alcohol–ketone system show that there are weakly bound chiral
alcohol–ketone minima in the ground electronic state, as desired. The particular advantage of
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Figure 38. Contour plots of |E1〉 and |E2〉 where dash-dash lines = 0.012 a.u., dot-dot
lines = 0.0004 a.u., solid lines = −0.004 a.u. and dot-dash lines = −0.012 a.u. Note that |E1〉
is symmetric with respect to reflection and |E2〉 is antisymmetric. Reflection here corresponds to
changing (α − 180˚) to (α + 180˚). From figure 1, [147].

using the ketone–alcohol complex is that the ketone, which is ‘recycled’ after the conversion
of one enantiomer to another, serves as a catalyst for the process.

The results in this section make clear that a chiral outcome, the enhancement of a
particular enantiomer, can arise by coherently encoding quantum interference information in
the excitation of a racemic mixture. The fact that the initial-state displays a broken symmetry
and that the excited state has states that are either symmetric or antisymmetric with respect
to σh allows for the creation of a superposition state that does not have these transformation
properties. Radiatively coupling the states in the superposition then allows for the transition
probabilities from L and D to differ, allowing for depletion of the desired enantiomer.
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Figure 39. Schematic level diagram emphasizing the M ≡ MJ features of the four level scheme
in figure 28.

Figure 40. Schematic level diagram emphasizing the M ≡ MJ coupling where three lasers of
perpendicular polarization irradiate the D and L enantiomers. Only the first five levels that are
coupled by these lasers are shown.

11. Adiabatic following and the non-degenerate quantum control problem

The most general ‘quantum control’ problem can be phrased as the problem of finding ways
to completely transfer population from an arbitrary initial-state to a desired ‘target’ state,
under the guidance of external fields (e.g. laser pulses). The general solution of this problem
can only be attained using ‘brute-force’ numerical optimization schemes. However, there is a
more restricted problem, namely achieving population transfer between superpositions of non-
degenerate energy eigenstates, which we term the ‘non-degenerate quantum control problem’.
We show below that this problem can be solved analytically using the concept of ‘trapped-
states’. This solution does not help in the control of chemical reactions and photodissociation,
dealt with in previous sections, because in those cases the continuum is characterized by
exact degeneracies. It is nevertheless useful when we encounter a non-degenerate manifold
composed of bound (vibrational) states. This problem has also received much attention (see,
e.g. [165–168]) and has usually been solved numerically. Here [169] we present an analytic
solution of the problem that generalizes the three level stimulated Raman adiabatic passage
(STIRAP) (see [170] for a review) to the multi-level case.

Consider population transfer between an arbitrary initial-state |�s〉 = ∑
k cs

ke−iEkt/h̄|k〉
to an arbitrary target state |�e〉 = ∑

l c
e
l e−iElt/h̄|l〉, where both spectra Ek and El are

non-degenerate and differ from one another.
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Figure 41. Control over dimethylallene enantiomer populations as a function of the detuning �1
for various laser powers. The first column corresponds to probabilities of L (— · —) and D (——)
after a single laser pulse, assuming that the initial-state is all L. The second column is similar,
but for an initial-state that is all D. The rightmost column corresponds to the probabilities L and
D after repeated excitation–relaxation cycles, as describe in the text. The first row corresponds to
control using the laser parameters on the extreme right, in which there is no internal conversion;
the second row uses the same laser parameters as does the first row, but with an internal conversion
time of 10 ps; the bottom row shows results for an internal conversion time of 10 ps, but with the
modified laser parameters shown.

Figure 43 illustrates the proposed method. The transfer process is induced by two pulses,
represented by a multi-mode electric field:

E(t) = Re
n+m∑
k=1

E0,k(t)e
−iω0,k t , (170)

where ωi,j ≡ (Ei − Ej)/h̄, and E0,k(t) are the slowly varying amplitudes of each ω0,k mode.
By choosing a different time dependence for the E0,k(t) amplitudes of the ‘dump’ process,
connecting the |k〉 = |n + 1〉, |n + 2〉, . . . , |n + m〉 states to the |0〉 state, and of the ‘pump’
process, connecting the |0〉 state to the |k〉 = |1〉, |2〉, . . . , |n〉 states, we in effect construct
two temporally distinct (‘dump’ and ‘pump’) pulses. The intensity and phase of each E0,k(t)

amplitude is adjusted, as explained below, to yield the desired transfer. In the so-called
‘counter-intuitive’ order [170], the pump pulse with the E1,0, . . . , En,0 components follows the
dump pulse with the En+1,0, . . . , En+m,0 components.

We solve for c(t) the column vector of the ck(t) expansion coefficients, c(t) =
(c0, c1, . . . , cn, cn+1, . . . , cn+m), of the system wavefunction, |�(t)〉 =∑n+m

k=0 ck(t) e−iEkt/h̄|k〉,
in the rotating-wave approximation. One convenient way to do so is to write the Hamiltonian
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– –

Figure 42. Sample scenario for enhanced enantiomeric selectivity in a racemic mixture of two
chiral alcohols related by inversion. An alcohol and ketone exchange two hydrogen atoms so as to
produce the ketone, but with an alcohol of reverse handedness. Here, A and X are distinct organic
groups and dashes denote, in the upper panel, hydrogen bonds. The electronically excited species
G, which is formed upon excitation with light, is postulated to be given by the structure at the
bottom of the figure. In this case, the top-most and bottom-most hydrogens are attached to the
oxygens and carbons, respectively, by ‘half-bonds’. From figure 4, [146].

directly in this approximation, and neglect off-resonance terms. This corresponds to a
molecule–field interaction of

HMR = h̄

n+m∑
k=1

[�0,k(t)e
−iω0,k t |0〉〈k| + �k,0(t)e

iω0,k t |k〉〈0|]. (171)

Here, �i,j (t), the time dependent Rabi frequencies, are given by

�i,j (t) ≡ Oi,j fD(P )(t) ≡ ε̂ · di,jEi,j (t)

h̄
, (172)

where ε̂ · d0,k are the electric-dipole matrix-elements, projected along the field polarization
and 0 < fD(t) < 1 and 0 < fP (t) < 1 describe the pulse envelopes of the dump and the
pump pulses, respectively.

Inserting �(t) into the time dependent Schrödinger equation and using equation (171)
gives

ċ(t) = −iH(t) · c(t), (173)

where the effective Hamiltonian matrix is

H(t) =




0 �0,1 · · · �0,n �0,n+1 · · · �0,n+m

�1,0 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
�n,0 0 · · · 0 0 · · · 0

�n+1,0 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·

�n+m,0 0 · · · 0 0 · · · 0




.
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Figure 43. A transfer scheme between the states |�〉 → |0〉 → |�e〉. The first (dump) laser pulse,
with Rabi frequencies �0,k′ (t), couples all the |k′〉 final (empty) states to state |0〉, while the second
(pump) pulse, with Rabi frequency �k,0(t), couples state |0〉 to the initial (populated) states |k〉.
Taken from figure 1, [169].

Of the n + m + 1 eigenvalues of H(t), n + m − 1 are zero and two are non-zero:

λ1,2,...,n+m−1 = 0,

λn+m = −λn+m+1 =
(

n+m∑
k=1

|�0,k(t)|2
)1/2

.
(174)

Corresponding to the zero eigenvalues of HMR are nm (‘trapped’) eigenvectors of the type

|Dkl〉 = �0,l |k〉e−iEkt/h̄ − �0,k|l〉e−iElt/h̄, (k = 1, . . . , n; l = n + 1, . . . , n + m).

(175)

Clearly, only n + m − 1 of these states are linearly independent. We can use the above
trapped eigenvectors to obtain a state that correlates (in the ‘counter-intuitive’ pulse ordering
scheme) at t = ts with the initial-state |�s〉 = ∑

k cs
k|k〉, and at t = te with the final

state |�e〉 = ∑
l c

e
l |l〉e−iElte/h̄. The particular combination that satisfies these asymptotic

conditions is

|D〉 =
∑
k,l

tkl|Dkl〉 =
n∑

k=1

|k〉e−iEkt/h̄

n+m∑
l=n+1

tkl�0,l −
n+m∑

l=n+1

|l〉e−iElt/h̄

n∑
k=1

tkl�0,k, (176)

where the tkl coefficients are chosen such that
n+m∑

l=n+1

tkl�0,l = cs
k,

n∑
k=1

tkl�0,k = ce
l . (177)

Equations (177) can be satisfied by choosing a ‘counter-intuitive’ pulse ordering in which
the E0,l , l = n+1, . . . , n+m components exist at t = ts and the E0,k, k = 1, . . . , n components
exist at t = te, and choosing tkl and �k,0(t) ≡ Ok,0fP (t) such that

tkl ∝ Ok,0Ol,0, and Ok,0 = Ccs
k, Ol,0 = Cce

l , (178)
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Figure 44. Complete population transfer between various superpositions of the |k〉 k = 1 − 5
states. The lines are denoted by the symbols |k〉 for the respective populations pk . Taken from
figure 2, [169].

where C is an arbitrary complex number. The only limitation on the choice of C is that the
(slowly varying) Rabi frequencies should be strong enough to guarantee the adiabaticity of the
transfer process. Other than that, the process is quite robust against changes in C.

The approach is demonstrated in figure 44 for a population transfer chain. This is composed
of the transfer from state |1〉 to a linear combination of states |4〉 and |5〉, followed by the transfer
from this superposition state to a superposition of the |1〉, |2〉 and |3〉 states, and back to the
|4〉 plus |5〉 superposition. This transfer chain is carried out using Gaussian pulses for which
the Rabi frequencies are given as �0,k(t) = O0,k exp[−(t − t0)

2/τ 2] (k = 1, . . . , n) and
�0,l(t) = O0,l exp[−t2/τ 2] (l = n + 1, . . . , n + m), with t0 = 2τ being the delay between the
pulses. The C coefficient of equation (178) is chosen to be C = 50/τ .

Thus, the above method provides a very simple and analytic pulse shaping recipe for
achieving a complete population transfer between two arbitrary superposition states |�s〉 and
|�e〉, composed of non-degenerate energy eigenstates.

12. Suppression of spontaneous emission

The possibility of suppressing spontaneous emission has been a source of great interest in
recent years [171–179]. More recently [180, 181] we proposed a new method of completely
suppressing spontaneous emission by utilizing the interference between resonances. The
same method is applicable to any decay process, provided that it is governed by overlapping
resonances.

The proposed approach relies on the fact that one can coherently excite a set of overlapping
resonances such that their decay exhibits a step-like behaviour. That is, the system starts
in a quiescent period in which no spontaneous emission occurs, followed by a ‘photon-
burst’ in which spontaneous emission is greatly accelerated, followed by another quiescent
period, etc. The quiescent period (and subsequent photon-bursts) are due to destructive and
constructive interferences between overlapping resonances. The reason it is impossible to
suppress the decay over all times in this fashion is that the phase and magnitude relations that
guarantee the suppression of decay at a given time, change as the system evolves in time, until
at a certain time-point the interference for decay becomes constructive and the system displays
the ‘photon-burst’.
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In order to suppress decay at all times we suggest irradiating the system before it reaches
the photon-burst phase with an external laser field that re-shuffles the phases of the coefficients
of the superposition of overlapping resonances. For the two overlapping resonances case
this pulse is simply a π pulse that inverts the populations between levels, thereby effectively
sending the system ‘backwards’ in time into the quiescent period. Additional external pulses
(‘interruptions’) must be applied periodically just before the system reaches the photon-burst
phases as it moves backwards and forwards in time. In this way the system is forced to forever
live on the quiescent period ledge.

As explained below, this approach is not limited to cases with pre-existing overlapping
resonances. It is possible to suppress the decay of any system, even that of a single decaying
resonance. This is achieved by (Autler–Townes) splitting [182] a given decaying state into
two overlapping field-dressed resonances using an external cw field. Below we describe
computational applications of this method to the suppression of the decay of a variety of
realistic atomic (e.g. H(2p) and Pb(6p7s3P 0

1 )) and molecular (e.g. Na2(A 1
+
u)) excited

states.

12.1. The decay of overlapping resonances

The decay of, and interference between, overlapping resonances is best explained using
‘partitioning’ theory [184–187, 160]. Assuming that we have a situation in which bound states
interact with a continuum of states, we define two projection operators Q and P , satisfying the
equalities QQ = Q, PP = P , PQ = QP = 0, P + Q = I , where I is the identity operator.
The Q and P operators are chosen to project out the subspaces spanned by bound states and
continuum states, respectively.

The full scattering incoming states |E, n−〉, are eigenstates of the Schrödinger equation,
written as,

[E − iε − H ]|E, n−〉 = 0, (179)

where the −iε serves to remind us of the incoming boundary conditions. Using the
completeness and orthogonality of P and Q, we obtain two coupled equations from the
Schrödinger equation,

[E − iε − PHP ]P |E, n−〉 = PHQ|E, n−〉,
[E − iε − QHQ]Q|E, n−〉 = QHP |E, n−〉.

(180)

We define two basis sets, |E, n〉 and |α〉, that are the solutions of the homogeneous (decoupled)
parts of equations (180). That is

[E − iε − PHP ]|E, n〉 = 0, (181)

[Es − QHQ]|α〉 = 0. (182)

Implicit in equations (181) and (182) is that |E, n〉 ∈ P and |α〉 ∈ Q and as such they are
orthogonal to one another. We, in fact, assume that each basis set spans the entire subspace to
which it belongs. Hence we can write an explicit representation of Q and P as,

Q =
∑

s

|α〉〈α|, (183)

P =
∑

n

∫
dE|E, n〉〈E, n|. (184)
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Following Fano [185] we can use equations (183) and (184) to write |E, n−〉 =
[P + Q]|E, n−〉 in terms of Q and P as

|E, n−〉 =
∑

s

|α〉〈α|E, n−〉 +
∑

n′

∫
dE′|E′, n′〉〈E′, n′|E, n−〉. (185)

We now solve forP |E, n−〉by writing it as a sum of the homogeneous solution of equation (181)
and a particular solution of the first of equation (180) obtained by inverting [E − iε − PHP ],

P |E, n−〉 = P |E, n〉 + [E − iε − PHP ]−1PHQ|E, n−〉. (186)

Substituting this solution into the second equation (180) we obtain

Q|E, n−〉 = [E − iε − QH(E)Q]−1QHP |E, n〉, (187)

where

QH(E)Q ≡ QHQ + QHP [E − iε − PHP ]−1PHQ. (188)

We now consider the case of optically induced overlapping resonances. We consider
therefore an isolated resonance |a〉 that acquires its width due to spontaneous emission to
a manifold of lower lying states denoted as |γ 〉. In order to create more resonances we
(Autler–Townes [182]) split this resonance by coupling it to a lower lying state |b〉 using a
monochromatic source of frequency ωi . The situation is described in figure 45.

The total Hamiltonian then assumes the form,

H = HM + HR + HMR, (189)

where HM is the matter Hamiltonian, HR is the radiative Hamiltonian, and HMR is the matter-
radiation interaction. For the two material levels |a〉 and |b〉 we write HM as,

HM = 1
2 h̄ωα,bσz, (190)

Figure 45. The energy levels and spontaneous emission pathways of an Autler–Townes split
resonance. Shown is a resonance |a〉 of energy Ea , coupled by a monochromatic light of frequency
ωi to a lower lying state |b〉. As a result of this coupling, the resonance splits, displaying a hole
at the centre of the absorption line at E = Ea . The wiggly line represents spontaneously emitted
photons to lower lying states of energies Eγ . Also shown is the ground state of energy Egr that is
excited, using a shaped pulse, to form a superposition of the split components of |a〉 such that the
decay is delayed.
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where ωα,b ≡ (Ea − Eb)/h̄ and

σz|a〉 = |a〉, σz|b〉 = −|b〉. (191)

The free radiative Hamiltonian is written as

HR =
∑

k

h̄ωk

[
a

†
kak +

1

2

]
. (192)

The |a〉|0, . . . , 0, ni, 0, . . . , 0〉 state, denoted for simplicity as |a, ni, 0〉, and the
|b〉|0, . . . , 0, ni + 1, 0, . . . , 0〉 state, denoted for simplicity as |b, ni + 1, 0〉, are eigenstates
of H0, the un-coupled Hamiltonian, defined as, H0 = HM + HR . Fixing the zero of energy to
be mid-way between Ea and Eb we have that

H0|a, ni, 0〉 = (Eni
+ 1

2 h̄�)|a, ni, 0〉,
H0|b, ni + 1, 0〉 = (Eni

− 1
2 h̄�

)|b, ni + 1, 0〉, (193)

where Eni
≡ nih̄ωi + 1

2 h̄ωα,b − 1
2 h̄� with � ≡ ωα,b − ωi , is the energy of these states relative

to the vacuum energy.
The matter-radiation Hamiltonian within the dipole approximation is given by

HMR = −d · ε, (194)

where

d = dab(σ+ + σ−), ε =
√

h̄ωi

2ε0V
ε̂(a + a†). (195)

Assuming the rotating-wave approximation, we obtain that

HMR = h̄gi(σ+a + a†σ−). (196)

Therefore,

HMR|a, ni, 0〉 = h̄gi

√
ni + 1|b, ni + 1, 0〉,

HMR|b, ni + 1, 0〉 = h̄gi

√
ni + 1|a, ni, 0〉,

where

gi = −
√

h̄ωi

2ε0V

ε̂ · dab

h̄
.

Taking the Q operator as

Q ≡ |a, ni, 0〉〈a, ni, 0| + |b, ni + 1, 0〉〈b, ni + 1, 0|, (197)

we have (in matrix form) that,

QHQ =
(

Eni
+ 1

2 h̄� h̄gi

√
ni + 1

h̄gi

√
ni + 1 Eni

− 1
2 h̄�

)
. (198)

The eigenvalues of QHQ are given as,

E±
ni

= Eni
± 1

2 h̄�ni
, (199)

where, �2
ni

= �2 +4g2
i (ni +1). The (‘dressed’) eigenstates corresponding to these eigenvalues

are given [187] by

| + ni, 0〉 = sin θ |b, ni + 1, 0〉 + cos θ |a, ni, 0〉,
|−ni, 0〉 = cos θ |b, ni + 1, 0〉 − sin θ |a, ni, 0〉,

(200)
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where

tan 2θ = −�i

�
,

where

h̄�i ≡ −dab · Ei

and

Ei ≡ 2ε̂

√
nih̄ωi

2ε0V
. (201)

The two orthogonal states |+ni, 0〉, |−ni, 0〉 of the Q manifold and the states |E, mi, 1β〉
of the P manifold satisfy,

〈α′, ni, 0|QHQ|α, ni, 0〉 = Eαδn′
i ,ni

δα′,α where α, α′ = ±, (202)

〈E′, ni, 1β ′ |PHP |E, mi, 1β〉 = (E + nih̄ωi)δ(E
′ − E)δni ,mi

δβ ′β. (203)

The |1β〉 state of the above is a (spontaneously emitted) one-photon state in the β mode. The
excited |a, ni, 0〉 state emits a photon and decays into the P space, with the ωi photons acting
as spectators [188], which means that their number does not change in the process.

Assuming that the lower lying |b, ni + 1, 0〉 state is a non-decaying (or a slowly decaying)
state, and denoting the matter-radiation matrix elements as,

V (n)(a, 0|E, 1β) ≡ 〈a, n, 0|QHP |E, n, 1β〉,
we have that,

V (n)(+, 0|E, 1β) = cos θV (n)(a, 0|E, 1β),

V (n)(−, 0|E, 1β) = − sin θV (n)(a, 0|E, 1β),
(204)

where we have for brevity denoted ni as n.
The fully interacting |E, n, 1−

β 〉 states, obtained from equation (185), form a complete
basis set and can be used to expand |�(t)〉, the full time dependent wavefunction. Assuming
that initially (at t = 0) we populate a superposition of zero-photon states and a coherent state
in the ωi mode,

|�(t = 0)〉 =
∑
α,n

cα,n|α, n, 0〉, (205)

where cα,ni
= cαcn, with cn =∑n(α

n/n!), the wavefunction at time t is given by

|�(t)〉 =
∑
α,n,β

cα,n

∫ Ef

Ei

dE e−iEt/h̄|E, n, 1−
β 〉〈E, n, 1−

β |α, n, 0〉. (206)

Applying equation (187) to the present case we obtain that aα,n,β,m(E) the amplitude function
is given as,

aα,n,β,m(E) ≡ 〈α, n, 0|E, n, 1−
β 〉

=
∑
α′

〈α, n, 0|(E − iε − QH(E)Q)−1|α′, n, 0〉〈α′n, 0|QHP |E, n, 1β〉, (207)

where, QH(E)Q is defined in equation (188). Using the well-known identity, [E − iε −
PHP ]−1 = Pv[E−PHP ]−1 + iπδ(E−PHP), with Pv denoting the Cauchy principal value
integral, we can write the matrix elements of QH(E)Q as,

〈α, n, 0|QH(E)Q|α′, n, 0〉 = Eαδαα′ + h̄�
(n)
α,α′(E) + i

h̄

2
�

(n)
α,α′(E), (208)
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where

�
(n)
α,α′(E) ≡ 2π

h̄

∑
β

V (n)(α|E, β)V (n)(E, β|α′),

�
(n)
α,α′(E) ≡ 1

2π
Pv

∫ Ef

Ei

dE′ �
(n)
α,α′(E′)

(E − E′)
.

(209)

The amplitudes of the |α′, n, 0〉 states at time t equal,

〈α, n, 0|�(t)〉 =
∑

α

cα,n

∫ Ef

Ei

dE e−iEt/h̄
∑

β

〈α, n, 0|E, n, 1−
β 〉〈E, n, 1−

β |α, n, 0〉

=
∑

α

cα,nM
(n)
α′,α(t), (210)

where

M
(n)
α′,α =

∑
β

∫ Ef

Ei

dE e−iEt/h̄a
(n)
α′,β(E)a

(n)∗
α,β (E). (211)

The total population in the zero-photon material states with n spectator photons in the ith
mode, at time t , P (n)(0, c, t), is given by

P (n)(0, c, t) =
∑
α′

|〈α′, n, 0|�(t)〉|2, (212)

where c ≡ {cα,n}.
In order to delay the decay we need to find the set of initial coefficients c that maximizes

P (n)(0, c, t) over a given time interval τ after preparation. Once such a set of coefficients is
found, the overlapping resonances thus populated exhibit a step-like decay pattern [180,181],
a sample of which is shown in figure 49. Indeed, after a quiescent period in which a photon
emitted by one resonance gets immediately re-absorbed by the other, the system undergoes a
period of rapid decay in which a burst of photons escapes the atom. The ‘photon-burst’ phase
is followed by another quiescent phase etc.

The delay in the emission afforded by the quiescent phase may itself be of great practical
importance for many laser applications. However, we usually want to go one step further and
suppress the emission at all times. It is possible to do so in the 2×2 case [180] by applying a π

pulse at, or close to, the end of the quiescent period. The effect of the π pulse that transforms
the system according to the transformation matrix,

(0 i
i 0

)
, is to interchange the populations

between the two levels. Such an interchange of population in a two level system is known
to effectively reverse the direction of time. As a result, after the application of the π pulse,
the system moves away from the onset of the ‘photon-burst’ phase until it reaches the −τ

time, at which point another photon-burst is about to be launched. We avoid such a burst by
applying another π pulse that reverses the flow of time once again, sending the system back
in the positive time sense. By continuing to apply the π pulse every 2τ interval we confine
the system forever to the quiescent phase, making it shuttle back and forth between −τ and
τ . As shown, e.g. in figure 49, to be discussed in greater detail below, spontaneous emission
is thereby effectively blocked. The above analysis also applies to the Nα > 2 case, where the
transformation is slightly more complicated [180].

We now turn our attention to the application of the above strategy for the Autler–Townes
split resonance case. The radiative couplings to the β = k, γ mode, where ωγ = (E − Eγ )/h̄
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are [189],

V (α, 0|E, γ, 1k,γ ) =


ie

√
h̄ωk

2ε0V0
ε̂k,j · Dα,γ , E > Eγ ,

0, otherwise.

(213)

Here, we have dropped the (n) superscript denoting the number of ωi spectator photons because
the dipole matrix elements for spontaneous emission do not depend on this number.

Integrating over the directions of emission of the photons and summing over the two
possible photon polarization directions, we obtain that

�αα′(E) = e2

3πε0h̄
4c3

∑
{γ :E>Eγ }

Dα,γ · D∗
α′,γ (E − Eγ )3. (214)

The level-shifts �αα′(E) can be calculated from �αα′(E) using equation (209).
The decay matrix elements in the dressed state basis (dropping the energy argument for

brevity) can be expressed in the |a〉, |b〉 basis as,

�++(θ) = sin2 θ �bb + cos2 θ �aa + sin 2θ Re[�ab],

�−−(θ) = cos2 θ �bb + sin2 θ �aa − sin 2θ Re[�ab],

�+−(θ) = 1
2 sin 2θ (�bb − �aa) + cos 2θ Re[�ab] − iIm[�ab].

(215)

Since the bare states |a〉 and |b〉 have opposite symmetries, they emit into different sets of
levels, resulting in �ab = 0. The above expressions can therefore be written as,

�++(θ) = �̄ − cos 2θ �̂,

�−−(θ) = �̄ + cos 2θ �̂,

�+−(E, θ) = sin 2θ �̂(E),

(216)

where �̄ = 1
2 (�aa + �bb) and �̂ = 1

2 (�bb − �aa).
The possibility of delaying the spontaneous emission is governed by the ratio,

f1(E, θ) ≡ |�+−(E)|
[�++(E)�−−(E)]1/2

, (217)

which (due to the Schwartz inequality) can assume values between 0 and 1. The value of unity
leads to maximal delay and the null value to the complete loss of control over spontaneous
emission. The ratio reaches its maximum value when θ = π/4, i.e. when the field is
on-resonance. It then equals

f1

(π

4

)
= |�bb − �aa|

�aa + �bb

=
∣∣∣∣�aa

�̄
− 1

∣∣∣∣ . (218)

The maximal degree of delay of the spontaneous emission is attained when �bb ≈ 0, i.e. the |b〉
state is a meta-stable excited state; in that case �++(E) = �−−(E) = |�−−(E)| = 1

2�aa(E).
The ability to control the spontaneous emission resulting from the introduction of the cw

field is demonstrated by a series of computations presented below. In all these computations we
have assumed that the energy-dependence of the widths can be neglected over the integration
range, which is of the order of magnitude of the width itself. In figure 46 we show �++, �−−,
|�+−| and f1 that result from the introduction of a cw coupling field as a function of the mixing
angle θ . The results are shown for several different values of �bb/�̄.

In figure 46(a), �bb/�̄ = 0.01, which means that state |b〉 is a meta-stable state. The
degree of delay of emission we achieve in this case reaches the maximum value it possibly
can: f1(θ) ≈ 1. This degree of control is maintained over a wide range of the mixing angle θ .
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Figure 46. �++ (- - - -), �−− (— · —), |�+−| (——) and f ≡ |�+−|/(�++�−−)1/2 (♦).

Essentially, control is degraded only when the detuning is very large, causing almost no mixing
between the |a〉 and the |b〉 states (θ ≈ 0 or θ ≈ π/2).

In the next case, shown figure 46(b), �bb/�̄ = 0.2. It shows slightly less control, with our
ability to delay the decay now being more dependent on the field tuning. The optimal control
is achieved, as discussed above, exactly on-resonance, where f1 = 0.8 (see equation (218)).
The possibility of control is being completely eliminated as the �bb/�̄ ratio is increased, as
shown in the lower panel of figure 46.

Another important control variable is the ratio between �aa , the resonance widths, and
�E ≡ |E+

ni
− E−

ni
| = h̄|�ni

|, the energy spacings between Autler–Townes split resonances.
According to equation (199), the Autler–Townes splitting enables the tuning of the energy
spacings between the resonances by varying the Rabi frequency �ni

of the ‘spectator’ cw field.
Sample aα,n,β,m(E) amplitudes for overlapping resonances with �E/(h̄�) varying between
0.2 and 5 are shown in figure 47.

The signature of the interference is the appearance of a ‘dark state’ i.e. a continuum energy
where the lineshape (= |aα,n,β,m(E)|2 ) dips to zero, occurring at the peaks (E+

ni
or E−

ni
) of the

neighbouring resonance for each lineshape. These dark states, first discovered in [159], bring
about the phenomenon of electromagnetically induced transparency’ [190], midway between
the resonances, shown in figure 45, for a particular linear combination of the resonances. In the
optimized case studied here the

∑
β |∑α=± cαaα,β(E)|2 lineshapes shown in the figure 47(b)

do not necessarily dip to zero.

12.2. Suppression of spontaneous emission in sample systems

12.2.1. The hydrogen atom. We first consider the suppression of the spontaneous emission
of a hydrogen atom in the |2P0〉 state, which can only decay to a single (the ground |1S0〉)
state. We do so by coupling the |2P0〉 state, which is identified with state |a〉 of figure 45, with
the |3S〉 state (identified with the |b〉 state of that figure) using a resonant cw field. In contrast
to figure 45, here Eb > Ea , which means that �bb �= 0.
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Figure 47. (a) The |a±,β (E)| amplitudes in the 2 × 2 case, for several values of the levels spacing
�E for a constant �. The x-axis is scaled to encompass 3�E. The |a+,β (E)| is seen to dip to zero
at E−

ni
and the |a−,β (E)| is seen to dip to zero at E+

ni
. The E±

ni
positions are denoted by the triangles.

Each amplitude is automatically normalized, i.e. they satisfy
∫

dE aαβ(E)aα′β(E) = δα,α′ . (b)
The same as the upper panel for the

∑
β |∑α=± cαaα,β (E)|2 lineshapes.

All the parameters needed for this case are known analytically. Thus, the energy
differences between the material states are,

E2P − E1S = 3

4

me4

2h̄2(4πε0)2
= 3

8
a.u.,

and E3S − E2P = 5
72 a.u. We obtain that,

�2P0,2P0(E) = 215

311

4πε0

m2e2c3
(E − E1S − (ni + 1)h̄ωi)

3 = 626.8 µs−1,

�3S,3S(E) = 3 × 21536

512

4πε0

m2e2c3
(E − E2P − nih̄ωi)

3 = 6.32 µs−1.

(219)

The corresponding lifetimes are τ2P0 = 1.586 ns and τ3S = 157.4 ns. Using equation (216), we
obtain for the on-resonance Autler–Townes split states, |±, n〉 = (|2P, n + 1〉 ± |3S, n〉)/√2,

that �++(E) = �−−(E) = 316.6 µs−1, and |�+−(E)| = 310.2 µs−1.
Delaying the spontaneous emission is achieved by exciting the ground-state hydrogen atom

with a light pulse (linearly polarized in the x direction) whose shape, determined according to
the procedure outlined in the previous section, for an optimization time of 2.4 ns, is shown in
figure 48.

The result of exciting with the optimized pulse of figure 48 is displayed in figure 49 for
four different splittings (�E). We see a step-like decay: the system starts with a quiescent
period that lasts longer and longer the smaller the Autler–Townes splitting (i.e. �ni

) is. As
mentioned above, the onset of the photon-burst can be avoided by exchanging the population
between levels, thereby sending the time backwards until the next onset of the photon-burst
phase at which point another exchange of population is executed. In [180], the application of
a π pulse was suggested as a means of achieving this population exchange. However, because
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Figure 48. The light pulse (in frequency space) used to excite the Autler–Townes split |2P0〉
state from the ground 1S state to produce the optimal cα coefficients. This choice of coefficients
is the one most effective in delaying the emission (in the absence of the interruptions) over the
optimization time of 2.4 ns.

Figure 49. Suppression of the 2P–1S spontaneous emission in the hydrogen atom, for which the
natural line-width is h̄�̄ = 1.66 × 10−3 cm−1. The solid lines display the decay of the optimized
superposition of the Autler–Townes split levels with no interruptions. The dot-dashed lines are the
decay curves of the same superposition states in the presence of interruptions. The dashed lines
display the average decay of the two Autler–Townes split components. The optimization time τ

(�) is 0.2/� = 0.65 ns, and the total time range displayed is 0 to 3/� = 10 ns.

in atoms and homonuclear diatomic molecules the |+ni, 0〉 and |−ni, 0〉 states are not coupled
optically to one another, the desired π pulse would have to arise from a two-photon (e.g.
Raman) process. Rather, we can achieve the same reversal of time by switching the levels
while keeping the population of the levels intact. According to equation (199), we can switch
the order of the E±

ni
levels by adiabatically changing the sign of �ni

. A schematic illustration
as to the kind of interruption needed in the spectator cw field to achieve this is displayed in
figure 50.
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Figure 50. The train wave of the spectator cw field of frequency ωi near an interruption that
switches �ni

to −�ni
, thereby exchanging the order of the E±

ni
levels, as shown in the lower panel.

Figure 51. The three lowest singlet potential energy curves of Na2: 1 1
g , 1 1
u, and 2 1
g . Every
fifth vibrational level is marked with a dashed line. The |a〉 state is the ν = 20 vibrational level of
the second potential. The |b〉 state is the ν′ = 30 vibrational level of the third potential. Both are
marked by solid lines. The Franck–Condon factor (= overlap integral) between these two-states
is 0.118.

The decay curves resulting from the Autler–Townes split levels subject to the interruptions
displayed in figure 50 is shown as the dot-dash curve of figure 49. We see that the spontaneous
emission has been effectively suppressed, with the suppression becoming more effective, the
smaller is the Autler–Townes splitting. Also shown in figure 49 (as the dashed line) are the
natural decay curves, arising when we start with one of the eigenstates, i.e. cα′ = δαα′ . As can
be seen, this decay, which is non-exponential due to the interaction between the resonances,
is still much faster than the suppressed decay aided by the interruptions.

12.3. Suppression of the Na2(A → X) spontaneous emission

We now demonstrate that the suppression of spontaneous emission method works equally well
for molecular systems. In a molecule there are usually a multitude of final states to which
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Figure 52. The decay rates �νν(Eν) of the 70 lowest vibrational states |ν〉 of the 1 1
u surface.

Figure 53. Suppression of the spontaneous emission of the sodium dimer. The optimization time
τ (�) is 0.2/� = 10 ns, and the total time range displayed is 0 to 3/� = 150 ns.

the system can emit. In this example, we consider suppressing the emission from a particular
(|a〉) vibrational state belonging to the 1 1
u (A) electronic manifold, aided by a particular
vibrational (|b〉) state belonging to the 2 1
g electronic manifold. The relevant potentials are
displayed in figure 51.

Using an average electronic transition-dipole moment µe of 7 Debye (= 2.756 a.u.)
between the 1 1
u (A) and the ground 1 1
g (X) states [192], we have calculated the dipole
moment matrix elements within the Franck–Condon approximation, according to which

Dν,γ ≈ µe〈ν|γ 〉, (220)

where |ν〉 and |γ 〉 signify vibrational states.
The vibrational wavefunctions needed for this calculation were derived from the potential

energy curves of Schmidt and Meyer [193]9. In the present initial study only the vibrational
states (without the rotational sub-levels) were included in the calculations; the inclusion of
rotation is not expected to qualitatively change the conclusions drawn here.

9 The Na–Na potential curves and the relevant electronic dipole moments are from [193].
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The lineshape for the vibrational levels (and specifically that of ν = 20) of the excited
surface 1 1
u are much narrower than the energy level spacing, therefore all the resonances
are isolated, as in the atomic cases discussed above.

Assuming that the decay rates of the vibrational levels belonging to the 2 1
g manifold
(which can decay to the 1 1
u manifold) are negligible compared to those of the 1 1
u surface,
we can write �νν(E) as,

�νν(E) = e2

3πε0h̄
4c3

∑
{γ :E>Eγ }

|Dν,γ |2(E − Eγ )3, (221)

where γ includes only the vibrational levels in the ground electronic manifold. We obtain
that for 0 � ν � 30, �νν(Eν) ≈ 40 µs−1 or h̄�νν = 2.12 × 10−4 cm−1. The change
of �νν(E) with energy may be neglected, since the relevant integration range around Eν ,
±h̄� = ±2.1×10−4 cm−1, is much smaller than Eν −Eγ for all |γ 〉 ground states considered.

Figure 52 displays the decay widths �νν(Eν) for the 70 lowest vibrational states |ν〉 of the
1 1
u surface. Also displayed are the energy levels Eν .

The decay curves resulting from coupling the |a〉 = |ν = 20〉 with the |b〉 = |ν ′ = 30〉 are
shown in figure 53. Again the method is very successful in completely suppressing the decay.
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