Reflection and Refraction of Gaussian Light Beams at

Tilted Ellipsoidal Surfaces

G. A. Massey and A. E. Siegman

This paper deals with the reflection and refraction of a gaussian laser beam at a curved interface between
media of different refractive indices. The analysis extends beyond the usual caseof normal incidence at
spherical surfaces to include arbitrary angles of incidence and interfaces of ellipsoidal shape. By match-
ing the transverse variations of optical phase at the interface, equations for the spot sizes and wave-
front radii of the beams are obtained. These results have been converted to ray matrix form, which
is particularly convenient for analyzing thick lenses or systems of several elements. With these matrices,
one can readily design and evaluate optical systems containing such astigmatic elements as tilted spheri-
cal or cylindrical lenses and mirrors.

Introduction

It is sometimes necessary to evaluate the reflection
and/or the refraction of a gaussian laser beam at a
spherical or, in general, an ellipsoidal dielectric interface
which is tilted from the optical axis of propagation.
Examples include the use of spherical mirrors and lenses
at nonnormal incidence; the estimation of errors caused
by misoriented optical elements in an optical system;
the calculation of astigmatism caused by plane or
slightly curved surfaces placed inside optical resonators,
especially at Brewster’s angle; and the design of ring
lasers and other optical systems containing elements
with eylindrical or ellipsoidal surfaces. In connection
with a problem of this type, we have extended the
analysis of reflection and refraction at a dielectric
interface beyond the well-known results for near-normal
incidence and/or spherical surfaces, to include ellip-
soidal surfaces and arbitrary angle of incidence.

Two limiting assumptions are made in the analysis.
The first is that the beam diameter is always small
compared with both the radius of curvature of the
optical wavefronts and the radius of curvature of the
optical surface. Thus, we consider, at most, quadratic
variation of the wavefront phase and amplitude along
the transverse coordinates.

The second assumption is that for any ellipsoidal
surface (other than spherical or planar), one of the
principle axes of the ellipsoidal surface must lie in the
plane of iricidence. To put this another way, for an
ellipsoidal surface the plane of incidence of the light
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beam is restricted to one of the planes of symmetry of
the optical element; or, the rotation of any tilted
ellipsoidal element in an optical system is restricted to
be about one of its two principal axes. With this
assumption, our analysis does not cover all possible
cases, but it probably does cover the majority of cases
in which ellipsoidal (for example, cylindrical) elements
are introduced deliberately into an optical system in
order to achieve (or to compensate for) a particular
astigmatic effect.

Development of the Analysis

The analysis is carried out by requiring that the
transverse phase and amplitude variations of incident,
reflected, and refracted waves must match exactly
along the ellipsoidal boundary between two media of
different refractive indices n; and ns. Our analytical
results can also be derived using ray-tracing arguments.
The analysis based on phase matching at the boundary
is presented here because this approach seems easier
to present, using a minimum of illustrations, than the
ray-tracing derivation.

Consider the geometry shown in Fig. 1. Separate
coordinate systems for describing the incident, re-
fracted, and reflected waves are denoted by (z1,y1,21),
(22,2,22), and (ws,ys,23), respectively. The 2z axis in
each case points along the propagation direction of the
center of the beam; the z axes all lie in the plane of
incidence; and the y axes are all normal to the plane
of incidence in the direction necessary to create right-
handed coordinate systems. The origins of all three
coordinate systems are taken at the point of incidence
on the interface.

The interface itself is represented by an ellipsoid in
an (X,Y,Z) coordinate system. The angle of incidence
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Fig. 1. Coordinate systems for surface and for incident, re-

flected, and refracted beams.

on the interface from the medium of index n; is ©, and
the refracted angle in the medium of index n; is ©’.
Because of the principal axis restriction introduced
above, we may consider the interface to be part of an
ellipsoid of revolution about the ¥ axis, with the X~Z
plane corresponding to the plane of incidence, as shown
in Fig. 2. If the semiaxes of the ellipse have lengths
A and B, as shown in the figure, then the radius of
curvature of the surface in the X-Z or tangential plane
is Ry = A, and the radius of curvature in the orthogonal
or sagittal plane at the point of intersection is Bs =
B%/4. Note that positive values of By and R corre-
spond to a convex surface facing the incident beam.

The complex wave amplitude! for the fields in the
three beams may be written in the form:

'ai(xi,yi;zi) = /Ti eXp(—.’f¢i[xi,?!-';2i]): (7= 1;233)y 1)

where the complex phase ¢, is given by

k'. 1'2 Y42
di(Tiynzi) = kizi + é‘(i— -+ y_), (2)
qri qsi
with the identifications: ¢ = 1 <> incident beam, ¢ =
2 « refracted beam, 1 = 3 < reflected beam; 7T =
tangential plane; S = sagittal plane:

k1 = 27"721/)\0 = k;;, kz = 27!%2/)\01 (3)
1/q:=1/R; — j(\o/mnw:).

We are using the complex gaussian beam notation, in
which B, represents the wavefront radius of curvature
(positive for a diverging beam); w; is the beam radius
to the 1/e field strength point; and the complex curva-
ture ¢; combines the wavefront radius and beam radius
in the manner indicated. The phase ¢, is then also a
complex quantity, combining both conventional phase
information and amplitude information.

The ellipsoidal surface is represented in the (X,Y,2)
coordinate system by

(X2 + Z2)/A* 4 Y?¥/B2 = 1. 4)

If we transform from this coordinate system to the
incident wave coordinates by using the relations:

X = z; 4+ A sing,
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Y = Y, (5)
Z=z—A sin(—),

then the ellipsoidal surface is described exactly by
(z1 + A sin®)? + (Ay/B)? 4 (21 — A cos9)? = A% (6)
A solution for z; on the interface, accurate to second
order in the transverse variables z; and v, is
x12 + y]2 ,
2Rrcos*®  2Rgcos®

2 ~ z; tanB® -+ )]
where we have eliminated the ellipsoidal parameters A
and B in favor of the local tangential and sagittal radii
Ry and Bs. We may now write the complex phase of
the incident wave on the interface surface in terms of
23 and yy only, in the form:

km:ﬂ 1 1
) = hizy tan® + o —
1@y W tan 2 (qm + Ry (30539)

k1y12 1 1
—| — . (8
2 (qm + Rg cosG) ®

We will obtain the desired relationships between var-
ious ¢ parameters by requiring that the complex phase
variation of the incident, refracted, and reflected waves
must match exactly on the interface, i.e.,

&) = eE,in) = es(@,n). )

Let us consider the reflected wave first, since it is slightly
simpler.

Reflected Wave

For the reflected wave, we use the coordinate trans-
formation:

z3 = —I; c0s20 — z sin206,
Ys = Uy (10)
73 = x1 5in20 — 2 cos20.

Substituting this together with Eq. (7) into ¢s(xs,y3,2:)
yields the result:

kx2f 1 1 — 2 cos?©
e3(x,y1) = ki tan® + %(*‘ + —‘—'_>

qrs Ry cos®

k1y12 1 1 — 2 cos?20
—_—\— — ). (11
+ 2 <qss + Rs cos® ) ( )

Fig. 2. Definition of ellipsoidal surface expanded about point
of incidence O. Center of ellipsoid is at O', with semiaxes
A and B.



Table 1.

Ray Matrix Elements

Refraction at

Matrix elements Reflection Refraction Brewster angle
. (n,2 — sin2@)*
Tangential 1 —_
A & N, COSO fir
Sagittal 1 1 1
Tangential
B or 0 0 0
sagittal
. c0s0 — (n,2 — sin?)} A — n3)(n,2 + 1)}
Tangential 2/Rr cos0 ;
C & /B co Ry cos8(n,? — sin20)# R,
. c0s6 — (n,2 — sin?0)3 1 —n,?
Sagittal 2 cosO/R, ST
g c0s6/Es Ren, Renin® + 1)}
c0s0
Tangential 1 ————— 1/n,?
D 8 (n.? — sin?0)¥ /s
Sagittal 1 1/n. 1/n.

Equating coefficients of z;2 and ;2 between Eqs. (8)
and (11) yields the basic tangential and sagittal rela-
tions for reflection at the surface:

1 1

qrs qr

frpwwrs (tangential plane),

(12)
1 1 2 cos®
s gst + Rs
These relations imply the following relations between
the spot sizes and wavefront radii in the tangential

and sagittal planes:

(sagittal plane).

Wrs = W,
1/Rrs = 1/Rm + 2/(Rr c0s8), (13)
wss = Wgsy,

1/Rss = 1/Rsi + 2 cos®/Rs.
For a spherical surface, these reduce to the results
previously given by Collins.?
Refracted Wave

We obtain the refracted wave relations similarly,
making use of the coordinate transformation:

xy = 21 cos(® — 8’) + 2 sin(0@ — O’),
Y=, (14)
2 = —z;8in(6 — 0') + 2z cos(® — O).

By expressing ¢s(zs,ys,22) in the (z1,71,21) system, with
2 eliminated by use of Eq. (7), we have on the inter-
face:

wo(Z1,51) = kozi[tan® cos(® — 0') — sin(6 — 6')]

ki’ cos’’ 1 cos(® — 6'):| Icig_/l_zl:_l_ cos(6— 9’)]
2| cos?0 qre Ry cos’@ 2 [ gs Rg cos®
(15)

By again equating coeflicients of ;2 and 32 in Eqgs. (8)
and (15), we obtain the results:

1 cos®®' n,  nrcos(®@—6)—1 (16)
gri €088 gre Rr cos’0 !
— ! —
1 _ n.cos(® — 0') 1’ a7)
gy gsz Rg cos©
where we have used the convenient abbrevation: n, =

ne/ny = ks/ki. By using Snell’s law to eliminate ©’,
we find that these results may also be written:

1 _ 7, c0s20 _}_ +
grs n.% — sin®0 /qn

1 11 c0s0 — (n,* — sin%@)?}
_11, [ ( )l (18)
gs: Tr gs1 n.Rg

n.leos® — (n,? — sin20)#
Ryin,.? — sin?0)

b

The wavefront radius and spot size relations for the
refracted wave are then given by

(n? — sin?0)?
Wre = e ea— T 4 Y

- COSO
1 nrcos’®@ \ 1 + n,[cos® — (n,2 — sin?0)}]
Ry,  \n,?—sin?0/Rn Rrln,? — sin?0}
Wse = Ws,
1 11 c0s8 — (1,2 — sin?0)?
==+ : (19)
RSZ e RS!. nrRS

These results may also be obtained by conventional
ray tracing.

Ray Matrix Results

It is also convenient to have the above results in
the form of ray transfer matrices. We can readily
transform to matrix notation by arbitrarily eonstruct-
ing a ray vector for the ¢th beam, in terms of the pre-
viously defined quantities w and R, of the form:

Ray vector = I: (20)

w;
wi/Ri |
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Following conventional ray vector notation, we have
made w; in Eq. (20) the ray height, which is analogous
to the spot size, and we have chosen w;/R; to be the
ray slope, which is consistent with previous definitions
since we are considering only slopes of magnitude much
less than unity., We seek an 4, B, C, D matrix of the

form:
w; . A B Wy >
[wf/Rj]‘ c D] [wi/R.-] @1y

to describe the ray transformations that occur upon
reflection or refraction at the curved interface. This
procedure is carried out for the tangential and sagittal
planes. Writing out the individual relations in Eq.
(21) and making use of our previous results, Egs.
(18) and (19), leads to the tangential and sagittal matrix
elements for reflection and refraction summarized in
Table I. Since the refraction matrix elements for
Brewster angle incidence will be of particular interest
in some applications, the elements for this case have
been listed separately. A helpful check for carrying
out numerical refraction caleulations is the fact that
the determinant of these matrices is always n;/n, =
n,~! for refraction from a medium of index 7, to a
medium of index 7n,.

Using the matrix form for the refraction relations, it
is particularly easy to characterize the effect of a general
second order, astigmatic thick lens, by simply cascading
the appropriate surface matrices for the two lens
surfaces on either side of the usual translation matrix:

3

where d is the distance traveled by the beam in re-
fracting through the element.

Conclusion

The reflection and refraction of a gaussian laser beam
at a tilted ellipsoidal interface between different di-
electric media has been analyzed by matching the
transverse variations of the fields at the interface.
Carrying out the matching to second order yields rela-
tions between the g parameters, or between the spot
sizes and wavefront radii, for the reflected and re-
fracted waves. These results may also be transformed
into the ray matrices characterizing refraction and
reflection at the interface. Using these relations, a
variety of practical problems involving off-axis lenses
and mirrors, ellipsoidal optical elements, and various
other astigmatic optical systems may be readily
solved.
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Guenter H. Schwuttke (left) and John M. Fairfield, of the
IBM Components Division development laboratory here, discuss
a diode they made by using light from a solid state laser. The
quality of the experimental dicde was comparable fo that of
devices made by conventional diffusion processes (see the De-

cember issue of Solid-State Electronics). The work was spon-
sored in part by the Air Foree Cambridge Research Laboratories.
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