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Abstract

In this thesis, neutral atom ensemble qubits are discussed as a possible platform for

future quantum information and quantum communication applications. Interactions be-

tween ensembles are mediated by the Rydberg interaction, which provides a switchable

mechanisms for imposing large molecular interaction on length scales > 10 µm. Significant

progress has been made towards a demonstration of an entangling gate operation between

ensemble qubits. For example, clear demonstrations of the
√
N collective Rabi frequency

enhancement for mean ensemble populations of up to 16 atoms have been observed with

no scaling factors. Also shown are very sub-Poissonian N = 1 and 2 atomic Fock state

generation fidelities of 62% and 48%, or Mandel parameters of −0.62 and −0.50. State

tomography performed via two separate methods demonstrate that the intra-site N = 1

Fock state that results has a postselected multi-partite entanglement threshold of k/N

= 0.82 and 1.0. These indicated a high degree of W-state entanglement in an ensemble

qubit. The W-state ensemble qubit coherence time has been measured to be 2.6 ms for

N̄ = 7.6 atoms in the ensemble, and the coherence time appears to be limited by colli-

sional dephasing, and not the fundamental operation. This coherence gives a coherence

time to gate time ratio of 2600, and standard techniques exist in the field which should

improve up this initial result. Finally, the first observation of Rydberg blockade between

two ensemble qubits is also shown with a blockade fidelity of 0.89 and a result consistent

with perfect ensemble-ensemble blockade if the data is postselected on an N = 1 Fock

state in the control ensemble. While a parity oscillation measurement was not performed,
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the initial Bell state populations generated (p01, p10) = (0.28, 0.26) would achieve a Fi-

delity of F = 0.54 assuming a maximal coherence measurement, which would exceed the

F = 0.5 threshold for entanglement.

While we have observed the expected dynamics associated with perfect intra-ensemble

and ensemble-ensemble blockade fidelities, evidence has also been accrued that suggest

that an unanticipated fast Rydberg-Rydberg loss mechanism at long-range causes double

Rydberg excitation events to appear as an N = 0 Fock state event. An additional

mechanism for short-range double excitations and molecular evolution is also discussed,

which is posited to account for the discrepancy between the predicted ∼ 80% N = 1 Fock

state fidelity and the observed ∼ 50− 60% fidelity.

A formalism is presented for efficiently modeling the evolution of Rydberg ensembles of

up to about 30 atoms, given known sources of inhomogeneous broadening and decoherence.

In-depth modeling of fluorescence signals under loss conditions, for different atom number

ranges is discussed.

Finally, the development of a new experimental apparatus to replace the apparatus

used in this thesis is presented.
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Chapter 1

Introduction

The development of useful quantum bits (qubits), quantum memories, and deterministic

generation of remote entanglement promises significant advances in many areas of research

and applications of the new technology. The search for an ideal physical platform to

properly reproduce the idealized characteristics of a qubit spans two decades and has

seen considerable progress. The technical challenges inherent in such an endeavor are

considerable, but so is the promised return on investment in terms of new technology.

Because of this promise, proposed physical platforms have abounded and demonstrations

of excellent one- and two-qubit gates fidelities have been shown[1–4]. However, none

of these same platforms have an engineering blueprint to achieve the level of scalability

required to make a useful quantum computation device[5–7], which without new proposals

will limit the number of logical qubits available for a computation. Scalability becomes

even more of a limiting factor when recent theoretical results are considered[8, 9], which

demonstrate the cost, in ”overhead qubits”, of limited qubit inter-connectivity and error-

correcting schemes. In this work, we investigate the use of neutral atom ensemble qubits,

with interactions mediated by the Rydberg blockade mechanism, to develop a scalable

platform for qubits and quantum memories.

This thesis presents, in detail, the fundamental single-ensemble entangling operation,
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Figure 1.1: A diagram of an ensemble qubit composed of N = 3 constituent two-state
systems. In the ensemble, the maximum energy of the system is restricted to a single
excitation. Information is stored in the two lowest energy levels of the ensemble qubit.

proves a high degree of post-selected entanglement of the resulting excited state of the

ensemble, and demonstrates strong interactions between two ensemble qubits in prepara-

tion for a demonstration of a two ensemble entangling gate. I also discuss the prospects

for improvement of these metrics, propose a mechanism that is believed to be the lead-

ing contributor to limiting the fidelity of the operations, and propose a method for the

mitigation of this mechanism.

Ensemble qubits are systems, composed of constituent sub-systems, where quantum

information can be encoded in one or more effective two-state qubits[10, 11], see Figure

1.1. In the particular neutral atom implementation described in this work, an ensemble

qubit is a collection of atoms that are manipulated in a way where the individual atoms

are identical, not distinguishable, and addressed by external fields simultaneously. In

atom qubit implementations, information is typically encoded in the hyperfine manifold

of the ground state of the sub-systems, as these states are well isolated from environmental

decoherence effects, which degrade the performance of the system.

While ensemble qubits complicate some aspects like collisional decoherence channels

and inhomogeneous broadening, there are significant advantages that make ensembles a

convenient qubit implementation. Deterministically preparing an array of single atoms

quickly, simply, and efficiently is an outstanding problem in the field. Although much

progress has been made in recent years[12–16], a solution which satisfies all three criteria

is still wanting. In contrast, deterministically preparing an ensemble of atoms with N > 1

in every site in an array is a standard practice, requiring no additional complexity. With
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information encoded in an ensemble, atom loss events are not a critical error, as with

single atom qubits, and information can be recovered with an appropriate error correc-

tion scheme[11]. Finally, the ensemble experiences an increased coupling to a particular

propagation mode of the light field enabling quantum repeater protocols with no external

cavity enhancement[17].

There are many quantum information and communication schemes developed for en-

semble systems. A few schemes that are relevant to our implementation will be discussed

here. This work will focus on cataloging the progress made in developing a Rydberg

interaction mediated ensemble qubit architecture for use in these applications.

1.1 Collective Enhancement

Before preceding, it is necessary to introduce the concept of a collective Rabi frequency

enhancement. The excitation of a N -atom ground state to the entangled N -atom W-

state has an inherent
√
N increase in the effective Rabi oscillation frequency over the

single-atom Rabi frequency. In the case of strongly blockaded ensemble systems, the
√
N collective Rabi frequency enhancement is apparent due to the suppression of higher

excitation number states, and serves as an excellent observable for Rydberg blockade[18–

21], as well as an indicator for the degree of W-state entanglement[21].

For an ensemble qubit with stochastic atom number preparation, the
√
N dependence

of the collective Rabi frequency can cause pulse area timing errors if the atom number is

not known. To mitigate this issue, the atom number could be measured before the pulse

is applied. Alternatively, if the distribution of atoms in the trap is Poissonian, a larger

mean number of atoms in the ensemble will decrease the sensitivity to the exact atom

number. Otherwise, composite pulse schemes[22] or STIRAP/ARP pulses[23–25] can be

introduced that minimize the effect of stochastic loading.
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Figure 1.2: Figure is reprinted from reference [26], and shows the scale of the relative
molecular interaction strengths at some inter-atomic distance (R) between ground state
atom pairs (Van der Waals and magnetic dipole-dipole interactions), Rydberg atom pairs
(electric dipole-dipole interactions), and ion pairs (Coulomb interactions). The Rydberg
interaction goes as R−3 at short range in the Förster regime and R−6 in the Van der Waals
regime at larger separation.

1.2 Ensemble Qubit Protocols

All qubit protocols discussed here utilize the ”Rydberg blockade” phenomenon to provide

a switchable interaction between qubits 12-orders of magnitude larger than interactions

between ground state atoms[26], Figure 1.2. The Rydberg blockade is an effect of a strong

interaction energy, ∆dd(R), between atoms with inter-atomic separation R in Rydberg

states which are highly excited principle quantum number states n. When the interaction

energy is sufficiently large compared to the light single-atom coupling, Ω1, excitations in-

side a volume surrounding the initial excitation are off-resonant and therefore suppressed,

and we say that the atoms in this volume experience Rydberg blockade, Figure 1.3.

In the strong interaction limit, ∆dd � Ω, the excitation of |rr〉 is negligible and

effectively reduces the Hilbert space of the problem to a two-state system with a collective

basis, denoted in this work by {|0̄〉, |r̄〉}, Figure 1.4. The |0̄〉 ≡ |0(1)...0(n)〉 state is the

product state with all atoms in the ensemble in the initial non-interacting ground hyperfine

state |0〉. The |r̄〉 state is the entangled collective symmetric singly-excited state of the
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Figure 1.3: Energy level diagram of an ensemble of atoms with different number of Ryd-
berg excitations separated by a distance R. At long range the interaction energy ∆dd(R)
is small and excitations of two or more Rydberg atoms is possible. At shorter ranges
the interaction energy grows and prevents the excitation of the two atom state, which
truncates the maximum excitation number to 1 within some volume.
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Figure 1.4: A diagram of an ensemble qubit composed of N = 3 constituent two-state
systems with a single Rydberg interaction. The ensemble energy diagram (right) shows
the effect of the Rydberg dipole-dipole interaction energy, which shifts the energy of the
second excitation by ∆dd. If the Rabi frequency driving state transitions is significantly
larger than the interaction shift Ω� ∆dd, the system will remain in the two-level Hilbert
space defined by the ground and singly excited state.

ensemble and is defined as:

|r̄〉 ≡ 1√
N

N∑
k=1

|0(1)...r(k)...0(N)〉, (1.1)

where |r(k)〉 is the Rydberg state of the kth atom in the ensemble. A symmetric singly-

excited state of a system of spin 1/2 particles is known as the W-state[27]. We therefore

will refer to the state |r̄〉 as the Rydberg W-state.

If the Rydberg state was stable and well isolated, it would be reasonable to allow

population to remain in |r̄〉 for the duration of any computation. However, the Rydberg

state has a short lifetime, T1 ∼ 300 µs for n = 100[26], relative to the lifetime of the

ground hyperfine manifold, and is sensitive to external fields. It is therefore necessary

to map the Rydberg population to a ground state, |1̄〉, in another hyperfine manifold to

achieve long coherence times. The state |1̄〉 is also a W-state of the ensemble. Since this

is the state we detect directly, we will refer to this as the W-state for most purposes,

however in the text the specificW-state should be able to be inferred from context. Since

this third state is only ever used as a Rydberg population map for storage and is never

simultaneously addressed with |0̄〉, the system can still be considered a two-level system

with an additional ”overhead” state for most purposes.
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Protocols using Rydberg interaction mediated ensemble qubits differ substantially

from single atom qubit protocols in the implementation of local rotations. In typical

single atom qubit local rotations, a Raman laser or microwave is used to drive transitions

between qubit states[28]. However, for ensemble qubits, local rotations must be done

through the Rydberg state to preserve control of excitation number, which encodes the

state of the qubit. This means every ensemble qubit protocol will begin and end with

a single-atom π rotation, π̂1
1, |1〉 ↔ |r〉 so that the state of the qubit is stored in the

”storage basis” {|0̄〉, |1̄〉}, but all gates occur in the ”computational basis” {|0̄〉, |r̄〉}. A

single qubit rotation with angle θ and phase φ between |0̄〉 and |1̄〉 is implemented by:

|ψ′〉 = π̂1
1 θ̂(φ)0

N̄ π̂
1
1|ψ〉,

Where the notation θ̂sn indicates an n-atom collective rotation by pulse area θ between

state s and the Rydberg state r. In this notation, two-qubit CZ gate between two ensemble

control and target qubits C, T is implemented by:

|ψ′〉 = π̂C1
1

(
2̂π
)T1

1
π̂C1

1 |ψ〉,

where the new superscript in θ̂Lsn , L, identifies the different ensembles.

Encoding multiple qubits into the different magnetic hyperfine sub-levels of an en-

semble has been proposed as an extension of the basic protocol described previously[10,

11]. Here the storage basis is the excitation number in each of the hyperfine sub-levels,

while the computational basis requires at least two separate Rydberg states to be used

to prevent mixing since all qubits are spatially indistinguishable, and therefore must be

spectrally multiplexed.
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Figure 1.5: Gate protocols ensemble qubit schemes for (a) a Hadamard gate and (b) a
CZ two-qubit gate.

1.3 Quantum Communication with Ensembles

The distribution of quantum information between distant nodes has interesting applica-

tions, such as distributed quantum computing[29, 30], sensing, metrology[31, 32], and

cryptography[33]. The Ekert protocol [33] can be implemented by direct transmission of

an Entangled Pair Source (EPS) to generate remote entanglement between nodes, Fig-

ure 1.6(a). Since loss mechanisms in a distribution channel, such as an optical fiber, are

exponential in the length of the fiber, there is a practical limit imposed on the distri-

bution radius of the quantum information. For light in a telecom fiber the attenuation

constant is 0.2 dB/km [34], which at a length scale of 300 km will reduce the effective

data rate by 6 orders of magnitude. Quantum repeaters can be used to break up the

length between nodes into smaller segments, reducing absorption losses and potentially

extending the range of the network. However, without a quantum memory at the nodes

all entanglement purification steps must simultaneously succeed, the probably of which

also decreases exponentially with the number of nodes, Figure 1.6(b).

Quantum repeaters with quantum memories at EPS nodes, implemented using the

DLCZ protocol[35], can extend the range of these quantum networks on lossy channels,

using heralded entanglement and entanglement swapping to reduce the loss from expo-
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Figure 1.6: Variations of quantum communication channels between two end nodes
Alice and Bob. (a) A single link network where an entangled pair source (EPS) is used.
A single link is practically limited in distance by absorption or other losses in the channel.
(b) A channel with a single repeater node implemented with entanglement purification
implemented with a Bell state measurement device (BSM). Here the absorption losses are
halved but both links must succeed simultaneously for the protocol to succeed. (c) Two
nodes in a single channel with quantum memories (QM) implemented to store successful
remote entanglement events. Entanglement swapping is performed on the QMs.
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nential to polynomial. The DLCZ scheme is implemented by probabilistically generating

entanglement, through a short collective excitation, between the internal state of both

memory qubits at each node with a photonic qubit, Figure 1.7. The photons from each

subsegment of the network, i.e. photon from nodes A and B or C and D, are directed to

be incident on a 50/50 beamsplitter, such that detection of a photon on either detector

does not determine the source of the photon. A measurement of a photon on either de-

tector heralds the creation of an entangled state of the two remote node memory qubits

with state: |ψ〉 = 1√
2

(
|0̄L〉|1̄R〉+ eiφ|1̄L〉|0̄R〉

)
. If no photon is detected, the procedure is

repeated until a photon is detected. Entanglement swapping between adjacent entangled

segments can then be implemented to extend the distance spanned by an entangled pair.

To do this the intermediate nodes, B and C, are addressed to produce a photon if they

are in the singly-excited state. The generated photons are sent incident to another beam-

splitter and pair of single-photon detectors, which if a single photon is detected implies

that the remote nodes, A and D, share a single collective excitation and are entangled.

Since the DLCZ scheme relies on the production of the collective symmetric singly

excited state (|1̄〉) of the ensemble with negligible double excitation probability, incorpo-

ration of Rydberg blockade is a clear improvement over the original probabilistic scheme

since it can produce collective single excitations in an ensemble with near deterministic

fidelities. With some changes to the protocol, a two-photon coincidence event heralds the

creation of remotely entangled nodes at significantly higher rates[36, 37]. The improved

protocol is less susceptible to dark count induced errors since instead of measuring a

photon Fock state, a two photon coincidence event is measured. Incorporation of quan-

tum error correction protocols at the nodes further improves the rate of entanglement

generation[38]. Since Rydberg blockade can be used to generate entanglement[3], create

on-demand directionalized single photon emission[39, 40], and perform error correction

routines it stands as a strong candidate for a quantum communication architecture at

current entanglement generation fidelities. Recent demonstrations of photon-ensemble
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Figure 1.7: A schematic representation of a DLCZ protocol with 4 nodes A, B, C,
and D. (a) Photons (curved lines) are entangled with the state of an atomic ensemble
(circles) at each node and sent to a beamsplitter and pair of single-photon detectors for
each pair of adjacent nodes. The solid and dashed photon lines represent that, in the
original DLCZ protocol, at most a single photon will be emitted from the node pair.
Entanglement (red line) is post-selected by the measurement of a single photon, which
heralds the creation of a single collective excitation between the two nodes A(C) and
B(D). If no photon is observed, then the photon generation step is repeated. (b) Once
the nodes are determined to be entangled, then the entanglement distance is increased by
entanglement swapping. Photon generation steps are implemented on ensembles B and
C such that if the initial excitation Fock state was |1〉 then a photon is created and a
similar post-selection measurement takes places between the two nodes. (c) If a photon
is detected, then the entanglement is swapped between the segments and now A and D
are in an entangled state which extends the entanglement distance.
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entanglement by Li et al.[40], Rydberg blockade between ensemble qubits by Ebert et

al.[41], and quantum memory lifetimes of a few ms by Ebert et al.[41] lay the groundwork

for the demonstration of a simple Rydberg-mediated DLCZ based quantum repeater in

the near future[42].

1.4 Apparatus

The apparatus used in the experimental work contained in this thesis was constructed

and modified by the collective effort of many PhD students for about a decade before I

joined the lab. Improvements have been made to the existing system to enhance perfor-

mance, stability, and automation of the experimental process, however the basic under-

lying properties are the same. The intention of this section is to give a brief overview

of the experiment and to provide an accurate snapshot of an ever-evolving apparatus, so

that the reader can quickly proceed with the necessary knowledge to discussion of the

experimental work in the following chapters. For a more in-depth discussion of parts of

the apparatus the reader is referred to the following PhD theses: [25, 43–45]. A block

diagram of the apparatus is shown in Figure 1.8. A functional diagram focusing on the

individual FORT sites used in the experiments and an energy level diagram is shown in

Figure 1.9.

It should also be noted that the experimental apparatus described in this section has

been superseded by a new apparatus. The new apparatus is a complete overhaul of the

system and is discussed in detail in Chapter 8.

1.4.1 Experiment Control and Data Acquisition

An experiment is preprogrammed into the data acquisition (DAQ) system via a LabView

controller. The DAQ is able to generate digital timing sequences with 20 ns precision

and analog waveforms with a 100 kHz update rate. A repurposed counter serves as an
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Figure 1.8: A simplified block diagram of the experimental apparatus. The 1064 nm
FORT and is linearly polarized, while the 7800(1) lasers, the ground state rotation laser,
and the 480 nm laser are all σ+ polarized, with respect to the quantization axis ẑ defined
by the magnetic field B = Bz ẑ. All of these lasers are collinear and propagate along
the z-axis which is horizontal. The 795 nm optical pumping laser propagates vertically
along ŷ and is linearly polarized along ẑ, such that it pumps into the |F = 2,mF = 0〉
dark state. The 780 nm blow-away is circularly polarized and propagates along x̂. The
magnetic field is switched to point along x̂ during the blow-away procedure to minimize
Raman scattering events. The MOT beams are omitted for clarity.
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Figure 1.9: (a) A functional diagram of the experimental phase with multiple ensembles.
The atoms are prepared in |0̄〉 by the 795 nm optical pumping laser, and then ensemble
sites are addressed via frequency shifts on 780 and 480 pointing AOMs, according to the
specifics of the experimental control sequence. (b) The energy level diagram for single
atoms. The Ground state rotation (Raman) laser is 100 GHz red-detuned from the D2
transition. The 7800(1) lasers, along with the 480 nm laser is resonant with the |0(1)〉
ground state, but the lasers are red-detuned from the intermediate 5P3/2 state by 2 GHz.
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automatic veto system, where data points can be excluded from the analysis if certain

parameters are outside of predefined bounds, such as environmental magnetic fields, laser

power, and laser servo state. The experiment repeats with a period of about 600 ms, which

is set by the time to load the maximum number of atoms used in an experiment. The

cycling time is kept constant for all data since the large quadrupole field coils are oriented

parallel to the optical table, and will slowly magnetize the table over the course of a few

hours based on the average magnetic field. This would cause drifts in the background

magnetic field if the cycle time of the experiment was changed, so all experiments were

performed with the same quadrupole duty cycle and the magnetic field was kept cycling

overnight to minimize the drift.

The experiment can be broken into four distinct phases of operation: Atom prepara-

tion, State preparation, Experiment, and Detection. Relevant details about these phases

are discussed below.

1.4.2 Atom Preparation

The vacuum chamber consists of a 4.5” spherical cube vacuum chamber, filled with ∼ 10−8

torr of background Rb87 . The atoms are cooled from the background and trapped in

a Magneto-Optical Trap (MOT). The MOT is in a standard 3 orthogonal beam retro-

reflection configuration, with a pair of 56 A water-cooled quadrupole field coils, see Figure

1.10. Five parallel Far Off Resonance Trap (FORT) locations are generated by a diffractive

element from a single λ = 1064 input beam. The FORT axis is rotated about the vertical

axis 45 degrees from the MOT quadrupole field. A variable number of atoms are loaded

from the MOT into the FORT sites, by adjusting the MOT loading time and the time

spent in the cooling phase, which induces light-assisted collisions. The MOT quadrupole

field is turned off during the FORT loading phase and is negligible by the first camera

exposure > 100 ms later.

Atoms in the FORT sites have an axial distribution of σz = 7 µm and σr=0.7 µm and
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Figure 1.10: Diagram of the old MOT viewing along the XY-plane with water-cooled
quadrupole coils, reused from reference [44]. Not to scale.

temperatures of 100-200 µK, measured by drop and recapture experiments. To a good

approximation the atom clouds can be considered to be 1 dimensional.

1.4.3 Detection

Trapped atoms are detected via fluorescence collected on an Electron Multiplying CCD

(EMCDD) camera from the MOT and Hyperfine (HF) repumping lasers, while the atoms

are held in the FORT. The atom number is detected via threshold measurements of the

background subtracted atom signal from an integrated 3x3 region of interest for each trap

region. The FORT and MOT light are chopped out of phase at 1.25 MHz during this stage

to prevent heating due to anti-trapping of the excited state. This reduces the time that

the atoms are actually scattering photons by 50%. The fast chopping rate is significantly

higher than the trap oscillation modes, so little energy is transferred to the atoms while

chopping. Details on the fluorescence imaging are discussed in depth in Chapter 7. For

single atom experiments an initial camera exposure is used to post-select events where

an atom was present. Multi-atom experiments have only a single camera exposure at the



17

end, since it is assumed the loading rate is constant, since measuring the atom number in

a multi-atom sample is a partially destructive process. After the first readout time slot

(as is may not be performed), a cooling/light-assisted collision phase is implemented for

2-20 ms depending on the desired atom number for the experiment.

State-selective readouts are performed destructively via unbalanced radiation pressure

near resonant with the F = 2 → F ′ = 3 cycling transition, ideally heating and ejecting

an atom in F = 2 before a Raman event changes the internal state to F = 1 and stops

scattering photons. The ”blow-away” light is circularly-polarized, and directed radially

onto the FORT sites with a magnetic field in the same direction to maximize the number

of scattering events before a Raman transition event.

1.4.4 State Preparation

The atoms must be prepared in a single initial state for the desired experiment. A 1.5

ms optical pumping phase where atoms are prepared in |0〉 = |5S1/2, F = 2,mF = 0〉 is

performed using a linearly polarized 795 nm laser resonant with the D1 F = 2↔ F ′ = 2

transition. Since the ∆mF = 0 transition is forbidden for electric dipole transitions if

∆F = 0, the atomic population builds up in the |0〉 dark state. The transverse magnetic

fields are shimmed to optimize the optical pumping fidelity for the state preparation phase

and the experiment phase. Since the magnetic field is shimmed to the optical pumping

polarization it is critical to align the polarization with the propagation vector of the FORT

and addressing lasers. This ensures that the addressing laser polarization is well defined

in the quantization direction defined by the magnetic field.

Local rotations to the atoms can be performed with a stimulated Raman laser which

is fast and site-selective (Ω ∼ 2π × 600 kHz), or a global microwave horn (Ω ∼ 2π × 5

kHz) which can drive transitions between F hyperfine manifolds. Either system can be

used to prepare the atoms in arbitrary mixtures of |0〉 and |1〉, but cannot be used for

single atom rotations in ensembles.
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1.4.5 Rydberg Excitation

The Raman laser, the 7800, and the 7801 lasers all enter the optical train through the

same single mode PM optical fiber. The common path that all these lasers take through

the system is known as the 780 addressing laser system, which consists of some optics to

adjust the beam size and position, and also a pointing Acousto-Optic Modulator (AOM).

The pointing AOM is in a Fourier plane from the trap sites so that changes in the de-

flection angle are mapped to the position of the light in the atom plane. Changing the

pointing AOM frequency allows rapid sequential addressing of multiple trap sites during

an experiment. The 780 addressing laser system has beam waists at the atom plane of

ω(x,y) = (9, 7) µm.

A similar pointing AOM scheme is implemented for the 480 addressing laser path, with

the opposite diffraction order used to partially cancel the frequency shift from addressing

different trap sites. The remaining frequency shift (∼ 4 MHz/site) is then compensated

upstream on the Rydberg 7800(1) laser AOMs. The 480 addressing laser has beam waists

of ω(x,y) = (5.6, 4.7) µm at the atoms.

The single-photon Rabi frequencies for the Rydberg transition are typically Ω780 =

2π× 160 and Ω480 = 2π× 17 MHz with a -2 GHz detuning from the D2 transition, which

gives a two-photon Rabi frequency of Ω0 = 2π × 750 kHz. Rydberg excitation times are

controlled by the timing of the 780 lasers, while the 480 laser remains on for the duration

of the experiment phase.

1.5 Summary

This thesis discusses experiments and analysis performed in development of a Rydberg

interaction mediated ensemble qubit architecture.

Single-site Rydberg blockade experiments are discussed in Chapter 2, where Fock

states of the excitation number and trap population are produced for N = 1 and 2[20].
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The dynamics of the interaction are shown to conform to theoretical predictions. The ob-

servation of the excitation rate scaling as
√
N̄ in a regime where inhomogeneous broaden-

ing allows for the observation to be done for up to N̄ ∼ 15 atoms with no free parameters.

Additionally no evidence was observed for two atoms in the |1〉 state that exceeded the

measured background rate. However, the probability to produce a single |1〉 excitation

is observed to be about 15% lower than the expected 80% success rate. Identification

of a mechanism to explain the amplitude discrepancy motivated many of the subsequent

experiments and analysis contained in this work. A full discussion of this observation will

be reserved for Chapter 5, following discussion of the remaining experiments.

Chapter 3 presents evidence that the N = 1 state generated is in fact theW-state[41].

This is done by observation of a 2.6(3) coherence time in the storage basis via a Ramsey

experiment and a W-state tomography experiment. The state tomography is performed

by measurement of the total internal angular momentum of the ensemble which is used

as a witness observable for entanglement. The total angular momentum is measured both

with a Z-rotation and an X-rotation. Thresholds for entanglement are exceeded without

the assumption of no double excitations of |1〉. Using the fact that our system does not

produce double excitations of |1〉 the threshold for entanglement exceeds the threshold

for k-partite entanglement with 86% of the atoms in the ensemble.

Chapter 4 discusses the first demonstration of ensemble-ensemble Rydberg block-

ade[41]. We observe an 89% reduction of the target site amplitude, and a result consistent

with perfect ensemble-ensemble blockade when post-selecting on a control ensemble exci-

tation event. We also note an observed loss phenomenon of atoms in the Rydberg state by

observing the success probability of an excitation as a function of a target site pulse. This

is clear evidence of an unanticipated destructive Rydberg-Rydberg interaction between

trap sites, especially when considering that the inter-site blockade appears to work better

than expected.

Chapter 5 discusses possible sources of the amplitude discrepancy first noted in Chap-
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ter 2, consolidating the observations of Chapters 2, 3, and 4 into a proposal for a hypothet-

ical Rydberg-Rydberg loss mechanism and a potential experiment to test the hypothesis.

In addition to the experiments already presented, a few supplementary experiments are

discussed, which were less conclusive to solving the discrepancy, but carry weight in the

discussion.

Chapter 6 lays out a formalism for modeling inhomogeneous broadening in Rydberg

ensembles as well as single atom Rydberg systems. Additionally single site experiments

are modeled for atom numbers up to N = 30 including the effect of imperfect Rydberg

blockade shifts.

Chapter 7 presents various camera signal models employed in the experiment. Single-

, multi-, and few-atom camera signal models are employed based on the atom number

and collisional loss characteristics in the relevant experiment. This is how the ensemble

atom number is measured for the rest of the experiment. Additionally the state selective

readout method is described.

Finally, the new apparatus we have built to replace the apparatus used in this thesis

is described in Chapter 8, and Chapter 9 discusses future directions for the experiment.
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Chapter 2

Fock State Experiments

The deterministic preparation of a controlled, arbitrary number of neutral atoms, N ,

occupying a trap site is an outstanding problem in the field. The special case of N = 1,

referred to as single-atom loading, is useful for deterministically producing a lattice of

single atoms which is a starting point for many proposed protocols using neutral atoms

in quantum computation [46], quantum key distribution[47], and simulation of condensed

matter physics[48]. Techniques demonstrated in recent years have improved the state of

the art beyond the 50% filling fraction limit obtained with two-body losses[49]. Single-

atom preparation probabilities have reached 91% in 542 ms with blue detuned light as-

sisted collisions [12] and 95% in > 1 s by creating a Mott insulator [13]. Additionally

moving tweezers methods have been demonstrated, where defect free arrays are created

by compression from a low filling fraction array in 400 ms [14, 15]. In the case of fermions,

generation of arbitrary atom number site preparation up toN = 10 has been accomplished

with fidelities of ∼ 90%, and 96% for N = 2 [16]. In this chapter we discuss a procedure

to prepare arbitrary numbers of atoms in a single site using Rydberg blockade. We will

also demonstrate the site preparation procedure for N = 1 and 2 atoms at rates of 63%

and 48%, achieving sub-Poissonian loading with a Mendel factors of Q = σ2
N/N̄ = −0.62

and −0.50 respectively[20].
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A single atom can be selected from an ensemble of N atoms in a trap site by using

Rydberg blockade to energetically limit the ensemble to a single collective excitation. A

collective, coherent πN -pulse, tπN ≡ π/
√
N produces at most a single excitation. The

single Rydberg excitation can then be mapped to the trap population by a state se-

lective removal procedure. If the initial atom number cannot be accounted for in the

πN -pulse timing, then the N -dependence of the collective Rabi frequency, ΩN =
√
NΩ,

will contribute to shot-to-shot pulse area errors and limit the fidelity of the operation.

The probability of a successful Rydberg excitation, Pr, for an instance of N atoms with

a collective πN̄ -pulse chosen for a Poisson distribution with mean N̄ is given by:

Pr(t = πN̄) = sin2
(√

NΩπN̄/2
)

= sin2

(
π

2

√
N

N̄

)

= sin2

(
π

2

√
1− ∆N

N̄

)

≈ 1−
(
π∆N

4N̄

)2

,

(2.1)

where ∆N ≡ N̄ − N . Averaging N over a Poisson distributed sample, the Rydberg

excitation probability is given by:

〈r〉 ≈ 1− π2

16N̄
. (2.2)

With N̄ = 10 atoms the Rydberg excitation probability is > 90%, and for fidelities of 99%

N̄ ∼ 60 is necessary. The atom number requirement can be lowered by using composite

pulse sequences to minimize the pulse area errors for smaller mean atom numbers[26].

If the Rydberg excitation is then moved to a ”storage” state, the Rydberg excitation

and storage procedure can be repeated to transfer single atoms one at a time from the

initial state to the storage state. This allows one to prepare, with high fidelity, an arbitrary
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atom number state in the site. Since the transfer from Rydberg state to storage state is

also energetically limited by the Rydberg blockade mechanism, atoms can be ”pumped”

discretely without worry of population leakage back into the initial state. When the

desired number of atoms, N are occupying the storage state, the initial state can be

selectively removed, leaving the discrete atoms number N remaining.

In this work, we refer to the number of atoms in the ”storage” or excited state as the

Fock state of the system. Fock states are typically discussed in the context of photon

occupancy in an oscillator mode, however more generally Fock states are discrete eigen-

states of a number operator, N̂ , which for this work we will use the number of excited

atoms in an ensemble defined as:

N̂ ≡
N∑
k=1

Ŝ(k)
z +N/2, (2.3)

where Ŝz is the total spin projection of the ensemble along the quantization axis. In

terms of the previous discussion |−〉 is the initial state and |+〉 is the storage state. The

Fock state of the ensemble can be mapped to the trap site population by application of a

state-selective blow-away procedure, which removes atoms in the |−〉 state from the trap,

see Section 7.3. Therefore, the more general goal of Fock state preparation can be easily

extended to the secondary goal of deterministic atom loading.

2.1 Procedure

Rydberg blockade is used to deterministically excite a single atom from an ensemble of

atoms. Limiting the available Hilbert space to a single excitation in an ensemble enables

deterministic population inversion with a collective πN -pulse. Without a non-linear effect

similar to Rydberg blockade, single excitations must be prepared stochastically and are

governed by Poissonian statistics.

The procedure is to create a single excitation at a time from |0〉 ⇒ |r〉 ⇒ |1〉, and then
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repeat N times, followed by a |0〉 state blow-away procedure, see Figure 2.1. Since the

transitions are performed serially, as long as the ensemble is strongly blockaded (
√
N̄Ω�

∆dd), maximally one atom can transfer from |0〉 to |1〉 per pulse sequence. If the excitation

probability from |0〉 to |r〉 is perfect then there can be no transfer of population from |1〉

to |r〉. The pulses are enumerated as pairs in a sequence, so the 7800(1)-pulse that couple

k atoms (on average) to the Rydberg state with pulse area θ is denoted with the operator

θ̂
0(1)
k . A collective πk-pulse will be designated by π̂

0(1)
k for emphasis. The evolution operator

F̂N that describes the N Fock State procedure can be written generally as:

F̂N =
N∏
k=1

π̂1
kπ̂

0
(N̄−k+1). (2.4)

The generic Fock State experiment can therefore be written as:

F̂N |0̄〉 =
N∏
k=1

π̂1
kπ̂

0
(N̄−k+1)|0̄〉. (2.5)

The resulting state, F̂N |0̄〉, is measured by selectively removing the projection onto the

|0i〉 state for each atom with unbalanced radiation pressure, and counting the number of

atoms that remain.

The
√
N collective Rabi frequency enhancement, while being a signature of W-state

entanglement, introduces the consideration that, when dealing with statistical loading,

there will be a range of Rabi frequencies dictated by the loading rate distribution. The

pulse time could be corrected on a shot-by-shot basis if the atom number was able to

be measured. We unfortunately cannot post-select on atom number due to light-assisted

collisions which happen on a time-scale faster than our readout time. This may become

a possible avenue in the future [50]. In this thesis, we show ensemble data that includes

this unknown atom number parameter averaged into the data.

Since the π̂0-pulses couple the initial state |0〉 to the Rydberg state |r〉, these pulses will

always deal with a near Poissonian atom number distribution. For these pulses, we need to
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Figure 2.1: Fock state generation procedure shown for N = 2. The 480 Rydberg laser
is on for the duration of the experiment. The FORT is turned off while the 780 Rydberg
lasers are pulsing so that excitations occur in free-space. The 780 Rydberg laser alternate
such that collective π-pulses create a single Rydberg excitation or de-excite the Rydberg
population to the |1〉 state. The collective π-pulses must be adjusted based on the current
Fock state of the ensemble.
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convolve the expected Rabi oscillations, |〈r|ψ(t)N〉|2 = 1
2

(
1− e−t/τ cos

(√
NΩt

))
, with

the atom number distribution. This results in the following simple model:

|〈r|ψ(t)N̄〉|2 =
∞∑
k=1

PN̄(k)|〈1|ψ(t)k〉|2

=
1

2
− e−t/τ

2

∞∑
k=1

PN̄(k) cos
(√

kΩt
)
,

(2.6)

where τ is an experimentally determined single atom Rydberg coherence time, |ψ(θ)N〉

is the wavefunction for the N -atom Fock state ensemble after a θ̂0
N̄

pulse, and PN̄(N) is

the probability distribution function (PDF) of the Poissonian loading function with mean

N̄ for atom number N . The Rabi frequency spread due to stochastic loading leads to a

signal that appears to decay on a much faster time scale than the single atom coherence

time. This is shown for N = 1 and N̄ = {6.4, 20} in Figure 2.2 with single atom decay

turned off. Note that for π̂(1)-pulses, we ideally only couple discrete Fock states, so no

additional dephasing should be detected and the
√
N speedup should be apparent.
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Figure 2.2: Example plots of the simple model from Equation 2.6 for various atom
numbers. The solid red and dashed blue curves are for N̄ = {6.4, 20} respectively. The
dot-dashed grey curve is the exact N = 1 oscillation for comparison. No decay has been
added (τ →∞). The apparent decay comes exclusively from the averaging of the different
Rabi frequencies for each ensemble atom number state.
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2.2 N = 1

We begin by demonstrating the
√
N̄ collective enhancement for an ensemble with mean

atom number loading N̄ . The atoms are prepared in the |0̄〉 ≡ |2, 0〉 state after optical

pumping as described in Section 1.4.4. The FORT is turned off for ∼ 4 µs while the pulse

area of the collective θ̂0
N̄

-pulse is scanned to populate the Rydberg state. This pulse is

followed by a single-atom π̂1
1-pulse to transfer the Rydberg population to the |1〉 ≡ |1, 0〉

state. The FORT is turned back on, anti-trapping any remaining |r〉 population. The

atoms remaining in |0〉 are removed by the blow-away procedure, and the |1〉 population

is then measured via fluorescence.

The results of scanning the θ̂0
N̄

-pulse area during the F1 sequence is shown in Figure

2.3 for a range of mean atom numbers N̄ . The expected
√
N̄ Rabi frequency enhancement

can be easily seen in the difference between Figure 2.3(a,e) where for N̄ ∼ 16 the peak is

achieved at roughly θ0
16 = π0

1/
√

16.

The probability of producing a F1 Fock State is maximal when θ̂0
N̄

= π̂0
N̄
≡ π̂0

1/
√
N .

The mean atom number N̄ has been extracted from fits to Equation 2.6 where an overall

scaling factor is used to match the amplitude. The N̄ extracted from the collective

enhancement of the Rydberg Rabi oscillation frequency is compared to the mean atom

number measured via the fluorescence technique described in Section 7.2.3 in Figure 2.4.

The excellent agreement of the two measurements supports the theoretical 1 : 1 result

shown as the black line. Allowing the slope to vary gives a best fit parameter of 0.96(4).

The probabilities of N = 1 Fock state production are shown in Figure 2.5 as a function

of N̄ for many different trials of the experiment. We are consistently able to generate

the N = 1 Fock State with a fidelity of 60 − 65% for initial ensemble means of N̄ ≈ 6.

The observation of N = 2 events is consistent with the known blow-away infidelity. The

resulting Fock state distribution is highly sub-Poissonian with a Mandel parameter of

Q = σ2
N1
/N̄1 − 1 = −0.62(3). The results are shown along with the results of our model

with infinite (dashed red line) and finite (blue solid line) blockade strengths, which are
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Figure 2.3: Rabi oscillations between |0〉 and |r〉 for various atom number distributions.
A single-atom π̂1

1 pulse maps the Rydberg population down to the |1〉 state. The detection
probability of |〈1〉|2 is shown as a function of the single atom pulse area θ = Ω1t. (a)
The first 2π rotation for exactly N = 1 atom, where single-atom loading events are
post-selected from a stochastic loading procedure. The single-atom π0

1-pulse takes 670
ns. (b)-(e) The |1〉 populations show an atom number dependent frequency for ensemble
means of N̄ = 3.0, 6.5, 9.1, 15.5 respectively. The solid black lines are fits to Equation
2.6 with an overall scaling factor to match the oscillation amplitude. The data has been
corrected for the measured |0〉 blow-away fidelity.
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Figure 2.4: Mean number of atoms in the ensemble , as deduced from collective Rabi os-
cillations (ordinate) and by fluorescence (abscissa). The red circles are data from Poisson-
distributed atom ensembles, the green triangles are for F1 and F2 Fock states. The solid
black line, of slope 1, show that the collective oscillation frequency closely follows the
predicted

√
N dependence. The error bars are the uncertainty in the fit to the Ensemble

mean for both cases, not the expected width of the ensemble population distribution.
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Figure 2.5: N = 1 Fock state production fidelity as a function of mean ensemble number
and quantum Monte Carlo simulations. The crosses denote measured peak values. The
solid black line assumes ideal blockade and perfect excitation conditions. The red dashed
line adds in realistic experimental imperfections but infinite blockade, and the blue line
includes the predicted finite blockade strength. The blue line at the bottom shows the
predicted two-atom production. The yellow line is the full model with finite blockade
and an additional decay term Γgr = 200kHz for each ground-Rydberg pair within a hard
sphere of Rc = 0.9 µm. This decay is inspired by the observations of Niederprüm et al.
[51], where an anomalously large Rb+

2 cross section was observed. It should be noted that
the parameters, Γgr and Rc, are chosen to emphasize a density dependent effect are not
intended to be reasonable estimates and are significantly larger than expected.

described in detail in Chapter 6. The black line shows the result of the simple model

described by Equation 2.6. The amplitudes of these trials are inconsistent with our

models by about 15-20%, which suggest that the F1 amplitude should be ∼ 80% for our

system parameters.

The root cause of the amplitude discrepancy is unknown. However, the results of

additional experiments have suggested possible mechanisms which may account for the

discrepancy. The validity of the proposed mechanisms have been bolstered by observa-
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tions and predictions reported by other groups. After completing the discussion of the

experiment that will prove necessary for context we will return to the amplitude discrep-

ancy in Chapter 5. For now, we note that this overall scaling factor will continue to

show up in future experiments, so we focus instead on the accuracy of the dynamics until

Chapter 5.

2.3 N = 2

The preparation of the F2 Fock state is performed by following the F1 procedure imme-

diately with a second pair of pulses, F̂2 = π̂1
2π̂

0
(N̄−1)

F̂1. This time though, we instead

vary the pulse time of the last 7801 pulse to observe the
√

2 oscillation frequency for the

created F2 state. This experiment is given explicitly by:

F̂2

(
θ1

2

)
|0̄〉 = θ̂1

2π̂
0
(N̄−1)π̂

1
1π̂

0
N̄ |0̄〉. (2.7)

This experimental diagram is the example shown in Figure 2.1. The probabilities of

producing 0, 1, or 2 atoms, denoted {p0, p1, p2}, in the |1〉-state after this experiment are

shown in Figure 2.6(a0-2).

Since the range of atom numbers for this case is 0 ≤ n1 ≤ 2 we use the fluorescence

measurement procedure described in Section 7.2.4 to extract the probabilities {p0, p1, p2}

from the camera signal histogram. An example camera histogram is shown in Figure

2.7 for clarity, note that the pn probabilities are extracted from the amplitudes of the

blue, yellow and red curve respectively. Since the camera signal probability distributions

overlap non-negligibly, we cannot accurately apply a threshold measurement as we did for

the F1 data sets. Instead we rely on extracting the data from the whole histogram.

To investigate the dynamics of this experiment it is necessary to understand the be-

havior of the system for each possible initial state, |ψ(θ = 0)〉, leading into the θ̂1
2-pulse.

The possible states of this experiment are enumerated with the tuple (nr, n1), where the
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Figure 2.6: (α) The evolution of the n1 = 0, 1, and 2 atom populations using the
θ̂1

2π̂
0
(N̄−1)

F̂1 protocol for FN=2 fock state production. The black solid lines are simultaneous

fits to Equation 2.8 with the free parameters being the initial θ = 0 state populations,
{P(0,0), P(0,1), P(1,0), P(1,1)} = {0.099(5), 0.271(5), 0.291(5), 0.339(6)}. (β) The evolution for

the pulse sequence defined by: θ̂1
2U(t)F̂2, where U(t) is the propagation matrix describing

the state of the system when the FORT is turned back for a time t. The black lines
represent a simultaneous fit to Equation 2.10 with the initial θ1 = 0 state populations,
{P(0,0), P(0,1), P(0,2)} = {0.247(3), 0.314(3), 0.438(5)}, as the only free parameters.
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Figure 2.7: An example few atom readout histogram. Fock state probabilities,
{p0, p1, p2}, are extracted from the amplitudes of the 0 (blue short dashed line), 1 (yel-
low long dashed line), and 2 atom (red dot-dashed line) fluorescence signal distributions.
Details concerning these signal distributions are discussed in detail in Section 7.2.4.

number of atoms in |r〉 and |1〉 is given by nr and n1 respectively. Under ideal condi-

tions, at θ̂1
2 = 0 the state π̂0

(N̄−1)
π̂1

1π̂
0
N̄
|0̄〉 would be equivalent to |(nr = 1, n1 = 1)〉 with

unity probability. Because the Rydberg blockade is still in effect, the state |(2, 0)〉 is

energetically forbidden and θ̂1
2|(1, 1)〉 will evolve as:

θ̂1
2|(1, 1)〉 = cos

(√
2θ1/2

)
|(1, 1)〉+ sin

(√
2θ1/2

)
|(0, 2)〉.

The result is that the observed n1 expectation value will oscillate between 1 and 2, at

the enhanced
√

2 Rabi frequency. If the first transfer succeeds, but the second Rydberg

excitation does not the initial state is then |(0, 1)〉, and the dynamics are described as

θ̂1
2|(0, 1)〉 = cos (θ1/2) |(0, 1)〉+ sin (θ1/2) |(1, 0)〉.

The n1 expectation value will oscillate at the single atom Rabi frequency between 0 and

1 atom in |1〉. Likewise, if the first transfer does not succeed and the second Rydberg
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excitation does the initial state is |(1, 0)〉 and evolve as:

θ̂1
2|(1, 0)〉 = sin (θ1/2) |(0, 1)〉+ cos (θ1/2) |(1, 0)〉.

Note that this is exactly out of phase with the previous result. Finally, the state with

no successes |(0, 0)〉 does not evolve with θ̂1
2. Therefore the probabilities for observing

n1 = {0, 1, 2} atoms are given by:

p0(θ1) = P(0,0) + P(1,0) cos2(θ1/2) + P(0,1) sin2(θ1/2),

p1(θ1) = P(1,0) sin2(θ1/2) + P(0,1) cos2(θ1/2) + P(1,1) cos2
(√

2θ1/2
)
,

p2(θ1) = P(1,1) sin2
(√

2θ1/2
)
,

(2.8)

where P(nr,n1) is the probability for the system to have been in state |(nr, n1)〉 at θ1 = 0.

Note that to the extent that P(1,0) = P(0,1) the only θ dependence is the |(1, 1)〉 state

oscillating at the
√

2 enhanced Rabi frequency, due to the evolution of |(0, 1)〉 and |(1, 0)〉

being out of phase. This behavior is observed in the data shown in Figure 2.6(a0-2).

Of special significance is Figure 2.6(a2), where 3 full oscillations of the N = 2 Fock

state are observed with no atom number fluctuation induced decay. This is in contrast

to the initial π̂0
N̄

-pulses from the previous section. To obtain three full oscillations, it was

necessary to extend the FORT drop time to 6.34 µs incurring additional losses, which

lowers the maximum N = 2 preparation rate. An additional experiment, shown in Figure

2.8, is included where a shorter FORT drop time is used, which gives a more accurate

measurement of the N = 2 rate. For this data, we observe a maximal p2 or 48% and a

Mandel Q parameter of -0.50(5). The agreement of the data to the expected dynamics,

shown in black, also serves to validate the camera signal fitting models used.

A second experiment was also performed where a normal F̂N=2 pulse sequence is

applied to the ensemble, but after the sequence of 4 Rydberg π-pulses the FORT is

turned back on for long enough to remove any |r〉 population remaining. Then the FORT
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Figure 2.8: A similar data set to the on shown in Figure 2.6, but with a shorter FORT
drop time to demonstrate the full amplitude of the N = 2 Fock state oscillations.
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is turned back off and a 5th pulse θ̂1
2 probes the populations in n1. Turning the FORT on

anti-traps the Rydberg state and acts as a partial measurement of the ground state, so we

define the ground state partial measurement operator ĝ ≡ Πi

(
|0i〉〈0i|+ |1i〉〈1i|

)
⊗ 1(N−1).

In the Fock state experiment notation, this experiment is defined as:

F̂ ′2
(
θ1

2

)
|0̄〉 = θ̂1

2ĝF̂2|0̄〉. (2.9)

This test, unlike the previous, depletes the Rydberg population and aligns the phases

of oscillation at θ = 0 so that no cancellations occur. The states evolve according to

the their respective
√
N speed-up. The resulting behavior is shown in Figure 2.6(b0-2).

Using the same state enumeration |(nr, n1)〉, the possible θ1 = 0 initial states here are:

{|(0, 0)〉, |(0, 1)〉, |(0, 2)〉}. These states will evolve as follows:

• θ̂1
2|(0, 0)〉 = |(0, 0)〉,

• θ̂1
2|(0, 1)〉 = cos(θ1/2)|(0, 1)〉+ sin(θ1/2)|(1, 0)〉,

• θ̂1
2|(0, 2)〉 = cos(

√
2θ1/2)|(0, 2)〉+ sin(

√
2θ1/2)|(1, 1)〉,

This results in the final probability measurements of:

p0 = P(0,0) + P(0,1) sin2(θ1/2),

p1 = P(0,1) cos2(θ1/2) + P(0,2) sin2(
√

2θ1/2),

p2 = P(0,2) cos2(
√

2θ1/2).

(2.10)

The data in Figure 2.6(b0-2) is in good agreement with these dynamics, further supporting

the models assumed.
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Chapter 3

W-State Tomography

In the previous chapter, we concerned ourselves primarily with the Fock state of the

ensemble following an blockaded ensemble picture. A Fock state is, according to the

definition presented in Equation 2.3, simply a measure of the atom number and does

not specify any degree of coherence or entanglement in the state. In this chapter, we

expand on the F1 methods explored in the previous chapter to include experiments that

are sensitive to the degree of entanglement generated in the singly excited ensemble.

The output state following an ideal F1 Fock state experiment is given by:

F̂1|0(1) . . . 0(N)〉 =
1√
N

N∑
k=1

|0(1) . . . 1(k) . . . 0(N)〉

≡ |W〉,

(3.1)

Note that the output state has well defined relative phase and is symmetric. This sym-

metric singly-excited state is commonly referred to as the W-state[27]. It can be shown

that the total angular momentum of this, or any other of the N + 1 symmetric states, is

J = N/2, and all other states have J < N/2, see Section 6.2.1. It can also be convenient

to write theW-state in the Dicke basis (|J,M〉) as |1̄〉 = |N
2
, N

2
− 1〉. A measurement of J

enables a straightforward observable to test theW-state character of the output from the
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FN=1 procedure, and will also serve as an entanglement witness. We will expand upon

the formalism developed, and will now use a bar to denote a symmetric Fock state, for

example |0̄〉 ≡ |0(1) . . . 0(N)〉, and |1̄〉 ≡ 1√
N

∑N
k=1 |0(1) . . . 1(k) . . . 0(N)〉. For convenience, we

will also label the set of N − 1 F1 states with J < N/2 as |(1̄)⊥〉, following the example

of [52].

The observation of the
√
N Rabi frequency enhancement in Figure 2.3 is a clear

signature that the transition being driven is, in fact, between |0̄〉 and |r̄〉. This has been

exploited as a demonstration of k-partite entanglement with k ∼ 100 in a sub-Poissonian

ensemble of N̄ ∼ 130 atoms[21]. This could be done in our system, however we choose to

employ entanglement measurements that are distinct from the F1 experiment.

Besides the the observation of a
√
N collective Rabi frequency enhancement discussed,

two additional pieces of evidence are presented that demonstrate a significant degree of

multi-partite entanglement. First, a Ramsey fringe-like oscillation experiment is presented

in Section 3.1, from which a characteristic τ2 coherence time of 2.6(3) ms[41], as well as a

lower limit for the amplitude in |1̄〉. Finally in Section 3.2, the output of the F̂1 procedure

is probed with a global microwave rotation, which is a more direct measurement of the

amplitude in |1̄〉.

3.1 Ramsey-Fringe Coherence Measurements

A typical Ramsey-fringe experiment can be expressed as a sequence of three rotations

on the Bloch sphere, Rx(π/2)Rz(φ)Rx(π/2). Here φ is usually implemented by allowing

the system to evolve for some time, t, where a phase, φ = ∆t, is accumulated at a rate

equal to the energy difference, ∆, between the excitation energy and the energy during

the phase evolution step. Since a multi-photon process is used, the primary source of

phase accumulation is due to the AC Stark shift of the ground states arising from the

mismatch in single photon Rabi frequencies of the 7800(1) lasers and the 480 nm laser.
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Because of the AC Stark shifts, the lasers must be detuned from the free space resonances.

This detuning gives rise to a phase accumulation rate which is integrated over the full

free evolution period. An additional source of phase accumulation is the differential AC

Stark shift induced by the FORT laser.

As is the case with all Rydberg ensemble procedures in this work, the encoded state of

the ensemble in the interaction basis {|0̄〉, |r̄〉} must be mapped to the computational basis

{|0̄〉, |1̄〉}. In the storage basis, coherence times of up to 7 seconds have been reported in

the literature[53]. The procedure for measuring the τ2 coherence is outlined in Figure 3.1,

and is described as R below:

R̂(tgap) = π̂1
1

(
ˆπ/2
)0

N̄
π̂1

1Û(tgap)π̂
1
1

(
ˆπ/2
)0

N̄
. (3.2)

Here U(tgap) describes the evolution of the system during the gap time, and
(

ˆπ/2
)0

N̄
is a

θ̂0
N̄

= π1/(2
√
N̄) pulse. The three π̂1

1 pulses are needed to map the Rydberg population

to the storage basis state |1̄〉. The first π̂1
1-pulse maps the |r̄〉 state amplitude to |1̄〉 to

accumulate a phase, the second pulse returns the |1̄〉 population to |r̄〉 in preparation

for the interference pulse, while the third is used for the final measurement after the

interference pulse. The interference stage happens with the second
(

ˆπ/2
)0

N̄
-pulse, as

normal. Note that the FORT is turned off during the pulses to address the atoms, but

during the gap time the FORT is turned back on to prevent atom loss.

In the limit of τ2 � f−1
R , where fR is the Ramsey frequency, it is necessary to measure

the visibility of the Ramsey oscillations for various gap times. The result of a few oscil-

lation experiments with various tgap values is shown in Figure 3.2(a), and (b) shows the

visibility of the Ramsey oscillations at various gap times. We use a Gaussian visibility

decay, v(t), with functional form given by:

va(tgap) = v0e
−(tgap/τ2)2 . (3.3)
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Figure 3.1: The Rydberg 7800(1) addressing procedure for the Ramsey oscillation experi-
ment. The 480 nm laser is turned on for duration of the Rydberg pulses, while the FORT
is turned off to address |r̄〉 but is turned back on during tgap to prevent atom loss over
long timescales.

We define visibility as the peak-to-peak amplitude of the oscillation. The statistics are

not sufficient to distinguish between this form and the reversible decoherence form [54]:

vb(tgap) =
v0

[1 + (e2/3 − 1)(t/τ ?2 )]3/2
, (3.4)

where τ ?2 is the irreversible coherence time.

The result of multiple types of coherence experiments are shown in Figure 3.3. The

result of product state coherence times, generated with the fast ground state rotation laser

[55], are shown in blue with the coherence times from the W-state coherence experiment

described above in red. The unfilled markers denote post-selected single atom experiments

with the ground or Rydberg lasers. The limiting decoherence processes for theW-state are

presumed to be the linewidth of the Rydberg lasers for N̄ <∼ 4 and collisional dephasing

for N̄ >∼ 4. Both of these decoherence channels can be suppressed using established

techniques, but with a coherence to gate time ratio of ∼ 2600 we are not limited by these

processes at the current level.

Because rotations on the Bloch sphere conserve total angular momentum J , the Rz(θ)
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Figure 3.2: (a) Example Ramsey fringe-style oscillations for various gap times with
N̄ = 7.6 atoms. The black, red, and yellow data point correspond to gap times: tgap =
{0, 0.5, 2.5} ms. The lines show simple sinusoidal fits used to extract the visibility. (b)
The visibility of the Ramsey oscillations is shown as a function of the gap time. The
black solid line is a fit to Equation 3.3, where τ = 2.6(3). The grey dashed line is a fit
to Equation 3.4, where τ ? = 2.6(3) also. The data have been corrected for a ∼ 1.5%
per atom probability for an unintended |0〉 → |1〉 transition during the state selective
measurement procedure. Data are from 5/30/2014.

Figure 3.3: Dependence of ensemble coherence time on N̄ for W-states (red circles) and
product states (blue squares). The horizontal error bars represent the bounds for atom
number measurements interleaved between Ramsey measurements. The open symbols are
for post-selected N = 1 states. The dashed lines are a guide to the eye for the expected
limiting decoherence processes.
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rotation during the Ramsey oscillation probes the total angular momentum of the initial

state. Since |1̄〉 is the only state in the |J,M = N/2 − 1〉 manifold with total angular

momentum J = N/2, it is the only singly excited state that can couple to the ground

state |0̄〉 = |N/2, N/2〉. An Rz(θ) rotation will manifest as an oscillation between |0̄〉 and

|1̄〉, where the amplitude is a measure of the coherent state population with total angular

momentum J = N/2. For example, the singly excited state |10...0〉 would oscillate with

amplitude of |〈1̄|10...0〉|2 = 1/N .

From the tgap = 0 Ramsey data shown again in Figure 3.4(a), the state probabilities for

maximal |1̄〉 production can be extracted, giving {p0̄, p1̄, p(1̄)⊥} = {0.44(2), 0.46(3), 0.10(4)}.

The region defined by the visibility of the N = 1 Ramsey oscillation (white) must have

J = N/2 and defines the W-state projection. The region of N = 1 signal that does not

oscillate (blue) has a single excitation but where J = N/2−1, preventing it from rotating

into |0̄〉. Finally the region of signal with no N = 1 excitation (red) has J = N/2 since

no excitations are present. As the state is allowed to evolve through an Rz rotation the

states with J = N/2 will exchange population up to the limit of the |1̄〉 population. The

46(3)% W-state amplitude demonstrates a preparation rate that exceeds the incoherent

single excitation limit 1/N̄ = 11.4% for 8.8 atoms by a factor of 4. Additionally, it should

be noted that a thermalized single excitation would not oscillate at all.

In Figure 3.4(b), the data from Figure 3.2(b) is replotted in the context of the |1̄〉-

state and the |(1̄)⊥〉-states, where |(1̄)⊥〉 is defined as the set of states with total angular

momentum J = N/2− 1.

3.2 Microwave Tomography

A second tomographic experiment based on the work in reference [56] has also been inves-

tigated. In reference [56], following a short unblockaded excitation with a low probability

of generatingN > 1, a non-destructive Fock state measurement was performed to differen-
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Figure 3.4: (a) The Ramsey oscillation data for tgap = 0 is shown again from Figure 3.2(a)
with visual aids to point out the source of the {p0̄, p1̄, p(1̄)⊥} = {0.44(2), 0.46(3), 0.10(4)}
measurements. The probability of creating the N = 1 Fock state, p1, is the maximum
extent of the oscillations p1 = A + v0/2, where A is the mean of the Ramsey oscillation.
The probability of creating theW-state, p1̄, is the visibility of the oscillations p1̄ = v0. (b)
The result of p1 (yellow), and p1̄ (blue) are shown for the different Ramsey gap times in
the experiment. Note how the probability of a N = 1 Fock state remains nearly constant
with the gap time, where the probability of the W-state decreases by a factor of 6 due to
decoherence, or 4.8 if normalized to p1. The 20% drop in p1 is attributed to systematic
drifts in the apparatus over the course of the 12 hour experiment, for example 6.7 < N̄ < 9
atoms.

tiate between N = 0 and N 6= 0. Since an excitation conserves total angular momentum

as discussed before (ignoring non-ideal effects), the measurement of N 6= 0 heralds the

creation of the W-state in the ideal limit, with only a partial measurement which pre-

serves the entangled state. Following the detection of a N = 1 event, a microwave pulse

resonant with the |0〉 ↔ |1〉 transition is used to perform a rotation Rx(θ) and the mea-

surement sequence is repeated. By the same angular momentum conservation argument,

only the population in |1̄〉 can rotate back down to |0̄〉. Based on this the authors are

able to extract the state probabilities for p0̄, p1̄, and consequently p(1̄)⊥ = 1− p0̄ − p1̄.

We can perform a similar microwave tomography measurement, even though we do

not have the capability to non-destructively measure |0̄〉. However, since we are able

to prepare single excitations at a rate significantly higher than the stochastic method

in reference [56] it is possible for us to extract the initial state probabilities from the

statistical mixture of |0̄〉, |1̄〉, and |(1̄)⊥〉. The measurement basis states {|0̄〉, |1̄〉, |(1̄)⊥〉}
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Figure 3.5: The projection onto |0̄〉 during the evolution of the basis states for {|0̄〉,
|1̄〉, |(1̄)⊥〉} are shown in blue, orange, and green respectively averaged over a Poisson
distribution of N̄ = 5.3 atoms. There is a small amplitude for |(1̄)⊥〉 since there is a non-
zero probability to have a single atom in the ensemble, and for completeness we assign
this state to |(1̄)⊥〉.

evolve differently under a Rx(θ) rotation, as can be seen in Figure 3.5. Since the number

of atoms in state |1〉 ranges from 0 to N and there are significant losses during the readout,

the cleanest measurement is the population in |0〉, i.e. we perform a blow-away procedure

then plot the probability of measuring no atoms. This is in contrast to a standard readout

procedure where the probability of measuring the single atom remaining in |1〉 is shown.

Here the N − 1 dimensional subspace denoted by |(1̄)⊥〉 is degenerate under the N = 0

operator 0̂, |〈ψ(t)|0̂|ψ(t)〉|2 = 0, where |ψ(0)〉 ⊂ |(1̄)⊥〉.

The resulting measurement can be seen in Figure 3.6 as the blue data points and the fit

for the initial populations and microwave Rabi frequency is shown as the black line. The

resulting initial state amplitudes are given by {p0̄, p1̄, p(1̄)⊥} = {0.47(2), 0.53(5), 0.00(5)}.

The microwave Rabi frequency extracted from the fit in Figure 3.6 was within 5% of

the last measured single atom microwave Rabi frequency. The clear plateau in the data

around θ = 0 and 2π is indicative of theW-state as the |(1̄)⊥〉 state would not evolve into

|0̄〉.
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Figure 3.6: The probability to measure the ensemble in state |0̄〉 after the microwave
tomography experiment, data are shown in blue. A fit to the data for the initial popu-
lations and microwave Rabi frequency is shown as the black solid line. The grey dashed
line shows the expected result if all the population in |1̄〉 was instead in |(1̄)⊥〉. Data was
taken 5/30/2015.



46

3.3 Entanglement Thresholds for Partially Separable

States

Following the lead of reference [56], thresholds for partially separable states can be im-

posed based on conservative assumptions. A state is said to be entangled if the state

cannot be separated into two smaller product subspaces, thus we require the N -particle

state in question |ψ(N)〉 satisfy:

|ψ(N)〉 6= |ψ(K)
A 〉 ⊗ |ψ

(N−K)
B 〉,

for any K < N .

Therefore we continue with a proof by contradiction where a partially separable k-

partite entangled state is assumed, and we can generate a threshold surface in the 2-

dimensional space defined by the probability to generate |0̄〉 and |1̄〉, {p0̄, p1̄}. From the

tomographic measurements we can extract the 2-dimensional coordinates {p0̄, p1̄}. If the

coordinates exceed the threshold surface we can say that the generated state requires at

least k+ 1-partite entanglement. A partially entangled state can be written as a product

of m non-separable sub-spaces of dimension ki, where i is the index of the subspace:

|ψ(N)〉 = |ψ(k1)
1 〉 ⊗ |ψ(k2)

2 〉 ⊗ ...|ψ(km)
m 〉

The partially separable state limit for p1̄ for a given p0̄ is maximal for ki = k, where

0 < i < m, and km = N − k(m − 1) and |ψ(ki)〉 = cos(θi)|0̄(ki)〉 + sin(θi)e
iφi|1̄(ki)〉 [56].

This allows the substitution:

|ψ(N)〉 =
m∏
i=1

[
cos(θi)|0̄(ki)〉+ eiφi sin(θi)|1̄(ki)〉

]
, (3.5)

and therefore the points in the 2 dimensional k-partite separable space, {p0̄, p1̄}, are given
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Figure 3.7: Numerically approximated thresholds for 3-partite entanglement with N =
{4, 5, 6, 7, 8} top to bottom. The maximal value for {p0̄, p1̄} is shown from the fits to the
Ramsey oscillation (red) and the microwave tomography data (blue). A higher threshold
the more difficult it is to demonstrate k-partite entanglement.

by:

p0̄ = |〈1̄(N)|ψ(N)〉|2 =
m∏
i=1

cos2(θi)

p1̄ = |〈1̄(N)|ψ(N)〉|2 =
1

N

∣∣∣∣∣
m∑
i=1

[√
kie

iφi sin(θi)
m∏

j=1,j 6=i

cos(θj)

]∣∣∣∣∣
2 (3.6)

for all 0 ≤ θi < 2π and 0 ≤ φi < 2π. To generate an approximation of the threshold

surface we can perform a Monte Carlo where all θi and φi values are chosen randomly,

then the maximal p1̄ results binned for p0̄ are shown in Figure 3.7.

This analysis of the entanglement witness described above ignores additional infor-

mation we have constraining our system. For instance, the resulting output state from a

FN=1 experiment is observed to be consistent with perfect blockade. However, the state
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described by Equation 3.5 can have significant doubly excited population. Therefore

under the assumption of perfect blockade, p(>1) = 0, we can modify Equation 3.5 to:

|ψ(N)〉 = cos(θ)|0̄(N−k)〉+ eiφ sin(θ)|1̄(k)〉 (3.7)

The 2D threshold surface then simplifies to the analytical result:

p1̄ =
k

N
(1− p0̄), (3.8)

the result of which is shown in Figure 3.8. Using Equation 3.8, we can take the result

of the Ramsey and microwave tomographic data and extract a postselected k-partite

entanglement threshold. We obtain entanglement fractions of k/N = 0.82(6) for the

Ramsey tomography and k/N = 1.0(1) for the microwave tomography. This implies

that when the ensemble is in the F1 Fock state, 82(6)% and 100(10)% of the atoms are

participating in the entanglement on average.
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Figure 3.8: Thresholds for an N = 9 ensemble with {9, 8, 7, 6}-partite entanglement
from top to bottom. The maximal value for {p0̄, p1̄} is shown from the fits to the Ramsey
oscillation (red) and the microwave tomography data (blue).



50

Chapter 4

Ensemble-Ensemble Blockade

The previous chapters have presented experiments that probe the behavior of single en-

semble qubits, and Rydberg blockade interactions between atoms in the same trap site,

or intra-site blockade. In this chapter, multi-site experiments are presented, where both

intra- and ensemble-ensemble Rydberg blockade occurs. The first observation of Rydberg

blockade between ensemble qubits is presented with a fidelity of 0.89(1) and a fidelity of

∼ 1.0 when post-selected on the successful creation of the F = 1 Fock state in the control

ensemble[41]. The demonstration of Rydberg blockade between two optically resolvable

ensemble qubits represents significant progress towards the goal of ensemble-ensemble

entanglement via the Rydberg blockade mechanism. The progress toward generating en-

tanglement between ensemble qubits is discussed at the end of this chapter in Section

4.4.

4.1 Procedure

The procedure for suppressing the excitation of a nearby ensemble via Rydberg blockade is

a straight-forward interleaving of the procedure for creating a W-state in a single ensemble.

The site that is addressed first is called the control ensemble, while the later ensemble is

the target, in reference to the control and target qubits in a CNOT gate. In the notation
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of Section 2.1, the experimental sequence, B̂, is written as:

B̂(θ) ≡ π̂C1
1 π̂T1

1 θ̂T0
N̄T
π̂C0
N̄C
,

where π̂
C(T )0(1)
n represents an n-atom collective π-rotation between |0̄(1̄)〉 and |r〉 for the

control (C) or target (T ) ensemble. The populations in the four possible output states

|CT 〉 = {|0̄0̄〉, |0̄1̄〉, |1̄0̄〉, |1̄1̄〉} are then measured with a state-selective blow-away. This

experimental sequence is shown schematically in Figure 4.1.

Figure 4.1: Pulse sequence for inter-ensemble blockade experiment B̂.

To provide a background measurement, an identical experiment is also performed

except with the control site pulse, π̂C0
N̄C

, omitted. This experiment is denoted as:

B̂off (θ) ≡ π̂C1
1 π̂T1

1 θ̂T0
N̄T
.

Under ideal conditions where the Rydberg blockade and the ensemble Rydberg excita-

tion are both perfect, the expected result for B̂off is |ψf〉 = |1̄0̄〉 since the target rotation
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should be completely suppressed. If blockade is perfect, but the excitation rate is not

unity, denoted pex, then the expectation would be to observe |1̄0̄〉 at a rate of pex, |1̄0̄〉 at

a rate of (1−pex)pex, and |0̄0̄〉 at a rate (1−pex)2, but never |1̄1̄〉. If blockade is imperfect,

then we would observe |1̄1̄〉 at some rate, ignoring molecular loss channels.

4.2 Experiment

4.2.1 Main Results

Example targetW-state production pT = | |1〉C ⊗ 〈1|T ] B̂(B̂off )|0̄0̄〉|2 data with the lowest

blow-away leakage rate, 0.002/atom, is shown as the black (red) data points in Figure

4.2(a). To extract an ensemble-ensemble blockade fidelity, the simple N = 1 model from

Equation 2.6 is fit to the red points acquired with no blockading interaction (experimental

sequence B̂off ) for an overall amplitude ε and mean target site atom number N̄T . The

fit is then rescaled, with N̄T fixed, to the nominally blockaded (black) data points, from

experimental sequence B̂. The amplitude ratio of the two excitation curves reveals the

ensemble-ensemble blockade fidelity. For this data set, the blockaded Rabi oscillation

curve is 11% of the B̂ amplitude, implying that at least one atom is excited to the Rydberg

state, |r0〉, from the control site during a multi-atom π̂C0
N̄C

pulse at a rate of pex ≥ 0.89(1).

The observed pex is actually comparable to the pex expected in the ideal case, shown in

Figure 2.5. This clearly rules out the situation where the W-state production rate is low

due to a decreased Rydberg excitation rate.

To investigate the ensemble-ensemble blockade fidelity the data are post-selected on a

control transfer event, i.e. only final states measured as |1〉C are admitted into the data

set. The resulting target F = 1 probability is shown as the green data set in Figure 4.2(b).

The dashed green line represents the expected rate of background |11〉 events based on

the calibrated blowaway background rate; for the details of this calculation see Appendix

B. There is good agreement between the expected |11〉 background and the observed rate,
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Figure 4.2: (a) The results of the ensemble-ensemble Rydberg blockade pulse sequence
B̂ is shown in black shown in comparison with the non-blockaded rabi oscillation shown
in red. The solid red line is a fit to the non-blockaded data set with NT = 6.2 and an
overall scaling factor as free parameters. The dashed black line is the same function with
NT set to 6.2 and the scaling factor as the only free parameter, resulting in a reduced
amplitude of 0.11 of the non-blockaded oscillation. (b) The results of the same experiment
after post-selecting on a successful transfer in the control site. Ideally this should be zero
for all target pulse areas, but imperfect state selective readout creates some background
signal estimated by the green line shown. Clearly no evidence of the |1̄1̄〉 state beyond
the background rate is present.
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therefore we can say that this subset of data are consistent with perfect blockade within

the sensitivity of the experiment. The experiment is most sensitive to blockade leakage

when the blowaway leakage is small since those are the only two channels where |11〉

population can be accumulated. Note that this result is unexpected as the trap geometry

should allow for double excitations, as described in Section 6.2.

4.2.2 Control Ensemble Transfer Reduction

By post-selecting on |1〉C events, it becomes apparent that the number of successful control

transfer events decreases as a function of the increasing target pulse area. This behavior

is shown in Figure 4.3(a) for various atom numbers, site separations, and single-atom

Rydberg Rabi frequencies. To study the results in a quantitative manner, the results are

parameterized based on a figure of merit F , that should scale with the doubly excited

Rydberg probability, prr , given by[52]:

F = Ω2
N̄T

[
(n/n0)12

(R/R0)6

]−2

∝ prr,

where n is the principle quantum number, R is the ensemble-ensemble separation, n0 = 97,

and R0 = 8.7µm. In Figure 4.3(b), the figure of merit F is plotted against the initial linear

slope, dpC/dθT , of the normalized control transfer probability, pC = | [〈1|C ⊗ 1T ] B̂|00〉|2.

Limits on the points considered as ”initial linear slope” were selected manually. A larger

slope implies that the blockade leakage occurs on a faster time scale and therefore the

sample is less well blockaded. The monotonic increase in the initial slope with F is

evidence for long-range Rydberg blockade leakage, which quickly evolves into a molecular

state dark to the excitation lasers. The addition of an appropriate fast molecular evolution

to the ensemble formalism developed in Chapter 6 could be done, but would require

significant modifications to the formalism to correctly account for the possible states

resulting from such a decay. A simple model of the expected ensemble-ensemble blockade
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leakage is discussed in Section 4.3 in lieu of a full predictive calculation.

Figure 4.3: (a) Probability of preparing state |1C〉 as function of the target ensemble
pulse area θT . (a) Probability for several parameter sets: (111d5=2, R = 8.3 and 8.7 µm)
(red diamonds), (97d5=2, R = 8.3 and 8.7 µm) (green circles), (97d5=2, R = 17 µm)
(yellow squares). The data have been normalized to 1 at θ = 0 for clarity, with typical
success probability 40%-60%. (b) Comparison of the slope of the data in panel (a) with
the scaling parameter F from Eq. (3). The color markers are the same as in panel (a).
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This implies that there is, in fact, blockade leakage in the ensemble-ensemble blockade,

which is expected since the second site is not completely blockaded (Section 6.2). However,

what is unexpected is that no measurable amplitude of the ensemble-ensemble double

excitations is returned to |1〉, and are instead lost, creating an unanticipated trap loss

channel |rr〉 → |0(N̄C−1)0(N̄T−1)〉.

4.2.3 Discussion of Results

The results of the ensemble-ensemble blockade experiment suggest a possible, non-intuitive,

cause for the lower than expected W-state production rate, namely that there is a break-

down of blockade at short inter-atomic distances. If it can be assumed that when the

blockade breaks down, the resulting molecular state undergoes some evolution to another

state not addressable by the laser system, but remains in the area for the remainder of

the Rydberg pulses continuing suppress excitation in the nearby ensembles. This would

likely manifest as a better long-range blockade for the remaining atoms, but would result

in an excess of observed |0〉 states. This is well in-line with our experimental observations.

The short range intra-site blockade leakage loss channel may have been observed in an

earlier experiment (Section 5.2) but the repeatability of the result was not sufficient to

be convincing, and may be worth revisiting.

Predicting the molecular structure of the Rydberg states at close range is a formidable

task due to the high density of states that must be considered even in a small energy band,

and it is therefore difficult to predict behavior [57–60], see Section 6.2.4.

4.3 Simulations

A first approximation of the expected signal can be made by assuming perfect excitation

of a control atom. The position of the atom in the control site is made to be proportional

to the atomic density along z. and performing the same Monte Carlo analysis as described
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in Section 6.2 with the addition of an additional interaction term for the singly excited

target Rydberg state Uctrl(|zC−zT |). The result of this analysis for the 97D5/2,mJ = 5/2,

97S1/2,mJ = 1/2, and 113D5/2,mJ = 5/2 states is shown in Figure 4.5. Due to the

stronger interaction long range doubly excited states have been ignored in the simulation.

As can be seen there is an expectation that when the control atom is excited that there will

be 6-8% excitation in the target. Since these are long range excitations, the attractive

force on the atoms is small (F ∝ R−5) and the expected change in atomic position is

small during the ∼ 1 µs Rydberg pulse, leading to negligible detuning shifts during the

de-excitation pulse, RT
1 (π). Therefore according to the theory, with a single excitation in

the control we should see 6-8% excitations in the target when a control atom is excited,

which from Figure 4.2(b) is clearly not the case.

Figure 4.4: A cartoon model that the ensemble-ensemble blockade leakage simulation is
based on. (a) An atom in the control site (C) is assumed excited to the Rydberg state,
and based on the position of the atom an interaction term Udd(z) is added to each atom
in the target site (T) based on its randomly generated z position. (b) Then the atoms in
the target site undergo a collective Rydberg excitation pulse, and the Rydberg population
is measured. In this example an excitation occurs in the control site to one side of the
atom cloud. This allows a Rydberg excitation at the far end of the target site atom cloud
to be excited to the Rydberg state since the interaction energy is small.
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Figure 4.5: Example ensemble-ensemble blockade leakage calculations for various Ryd-
berg states, assuming a Rydberg excitation in the control ensemble where the excitation
probability density is proportional to the atom cloud distribution. The curves shown are
for 97D5/2,mj = 5/2 (blue), 97S1/2,mj = 1/2 (yellow), 113D5/2,mj = 5/2 (red). Note
that measurable numbers of atoms in |11〉 are expected for the blue and yellow curves.

4.4 Entangling Gates

For Rydberg blockade-mediated ensemble qubits to be useful as a quantum computational

architecture, it is necessary to demonstrate deterministic entanglement between distinct

ensemble qubits. This would typically be done by measuring observables that serve as

entanglement witnesses, similar to Chapter 3. In this case we would try to create the Bell

state |01〉+ |10〉, so the observables are the parity operator P̂ ≡ p̂00 + p̂11 − p̂01 − p̂10 and

the coherence C1. The relevant witness is given by the ”Fidelity”, F = 1
2

(p01 + p10) +C.

It can be shown that separable states are bound by F ≤ 1
2
, so measuring an F > 1

2
implies

that some degree of entanglement exists between the qubits[61].

1The coherence C is the coherence of the Bell State produced. For example the Bell state |01〉+ |10〉,
C would be the coherence term between p01 and p10.
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With the amplitude of W-state production in a single ensemble limited at present to

50-65%, a Bell’s inequality violation to prove entanglement is not feasible. Figure 4.6

shows typical initial Bell state populations, with excess |0̄0̄〉 population, but notably low

|1̄1̄〉 population.

Figure 4.6: Initial bell state populations for a π̂C1
1 π̂T1

1 π̂T0
N̄T

(
ˆπ/2
)C0

N̄C
experiment show-

ing an excess of |0̄0̄〉 but notably low |1̄1̄〉 population. The ideal case would be
(|0̄0̄〉, |0̄1̄〉, |1̄0̄〉, |1̄1̄〉) = (0, 0.5, 0.5, 0). The actual output is (|0̄0̄〉, |0̄1̄〉, |1̄0̄〉, |1̄1̄〉) =
(0.45, 0.28, 0.26, 0.007).

If we were to perform the parity measurement with this initial state, assuming full

coherence amplitude C =
√
p01p10 = 0.27, we would obtain a Fidelity of F = 0.54, which

would imply some degree of ensemble-ensemble entanglement.
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Chapter 5

Double Rydberg States

The previous chapters have demonstrated that, apart from the W-state amplitude, the

dynamics of the Rydberg ensemble qubits agree well with simple theoretical predictions.

Discussion of the W-state preparation amplitude discrepancy between the best observed

∼ 65% and the predicted ∼ 80%, had been withheld until all experiments had been pre-

sented. It is extremely likely that when the mechanism causing the amplitude discrepancy

is identified and mitigated, that significant advances in the current state of the art for

Rydberg ensemble qubits will be demonstrated shortly thereafter, as a demonstration of

ensemble qubit entangling gates and Fock state production for N > 2 are extensions of

the basic framework demonstrated in this thesis.

Now that the majority of the relevant experiments have been discussed, we can take

a step back and discuss the observation with all of the context. This chapter will discuss

two mechanisms, a long- and a short-range Rydberg blockade leakage that leads to loss

of both Rydberg atoms. A case for these Rydberg-Rydberg loss mechanisms to explain

the discrepancy in W-state amplitude and the ensemble-ensemble Rydberg interactions

will be made. For reference, we will be discussing the proposed hypothesis’ conformance

to the results of the following experiments:

1. N = 2 Fock state preparation tests (Section 2),
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2. W-state tomography and coherence (Chapter 3),

3. Ensemble-Ensemble Blockade tests (Chapter 4),

4. Differential atom number tests (Section 5.2), and

5. Sequential site single-atom loading tests (Section 5.3).

The last two experiments in this list are included at the end of this chapter, and are not

as conclusive or straightforward as the experiments occupying their own chapters.

5.1 Discussion

All of the experiments listed above demonstrate that, while the amplitude of |0〉 → |r〉 →

|1〉 transfer is lower than expected, the dynamics of this system are consistent with the

expected Rydberg physics. The results of the ensemble-ensemble blockade experiment

(Section 4.2.1) clearly demonstrate that the single-atom |0〉 → |1〉 transfer probability

discrepancy is due to a sub-optimal de-excitation, and not from a suppression of the exci-

tation to the Rydberg state. If the converse were true, there would be no way to explain

the reduction of the target site Rabi oscillation amplitude by a factor of 9, without invok-

ing a unsubstantiated correlation between the control and target sites. This observation

is also consistent with the initial populations measured in the F2 Fock state experiments.

What remains unknown is a sufficient explanation for this unanticipated de-excitation

rate reduction. In this section, two loss channels for doubly excited Rydberg states are

posited, one at long-range (R > RB) and another at short-range (R < Rs), that both

contribute to the observed loss. Here the inter-atomic separation designations refer to the

blockade radius where ∆dd(RB) = Ω, RB ∼ 15 µm, and the so-called ”spaghetti-regime”

Rs < 4 µm for n ∼ 100.
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5.1.1 Long-Range Double Excitations

Interactions between Rydberg atoms on length scales around the blockade radius, RB

and further are weak enough that doubly-excited Rydberg states can be excited with

non-negligible amplitude, see Section 6.2.4 for an in-depth discussion. If the interaction

between atoms is small enough to allow double excitations on a timescale on the order of

π/(
√
N̄Ω), then the π̂1

1 Rydberg de-excitation should be sufficient to produce measurable

population in the ground N = 2 Fock state. Note also that, even though the D-state

interaction potential curves are attractive, the acceleration experienced by a Rydberg-

Rydberg molecule goes as R−5 at long-range. The small acceleration experienced over the

course of the excitation pulse implies that a frozen gas model is valid.

We do not see any evidence for N = 2 population above the background rate from

imperfect blow-away in the single-ensemble F1 Fock state procedure. However, it is

expected that some N = 2 population should exist for our parameters. See the bottom

blue line in Figure 2.5. To explain the ”missing” doubly excited population, we introduce

a fast molecular evolution mechanism for long-range Rydberg atom pairs, where atoms are

far enough away to be excited, but close enough to interact on short timescales and evolve

into a molecular state that is not optically addressable, either due to angular momentum

selection rules or ionization.

We can see evidence for long-range blockade leakage and then subsequent molecular

evolution in a two ensemble experiment by examining the control ensemble transfer reduc-

tion observation (Figure 4.3). Here the success of a Rydberg excitation and subsequent

de-excitation in a control ensemble was dependent on the Rydberg excitation pulse area

on a target ensemble. The larger the pulse area on the target ensemble, the less likely

the control ensemble would be to successfully de-excite its Rydberg population. Since

the control ensemble Rydberg population immediately following the control excitation

pulse cannot depend on the pulse area of the later target ensemble pulse area, the control

ensemble Rydberg excitation must interact at long-range (R > 9 µm) with the target
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ensemble. The only way to have a long-range interaction at this scale would be to also

have Rydberg population in the target site. In order to explain the observation that no

double excitations be observed in the ground state, the long-range Rydberg pair would

then need to be lost from the system.

The molecular evolution mechanism has also been suggested in references [62] and [63]

where both groups report that the Electromagnetically Induced Transmission (EIT) of

Rydberg D-states is observed to decrease on µs timescales. Both groups report the rate

of transmission decay increases with increasing probe photon flux, which increases the

density of Rydberg excitations in the sample. To explain this phenomenon, the authors

invoke a fast evolution mechanism from Rydberg excitations pairs to other nearby long-

lived Rydberg state pairs uncoupled by the control field. These dark Rydberg states

continue to blockade subsequent excitations leading to a reduction in transmission. We

note that these observations are consistent with our residual blockade observations (Figure

4.2(b)) and the control ensemble transfer reduction observation (Figure 4.3).

Molecular evolution explains our ensemble-ensemble dynamics extremely well and with

the additional confirmation provided by the referenced papers, we are confident in the

long-range molecular decay interaction. This behavior has not been observed to be an

issue in Rydberg S-states for EIT, which may be a path forward if this was the dominant

problem. Another tactic for avoidance is to increase the blockade figure of merit, RB/σz,

either by increasing the density by cooling or increasing the blockade radius. To test

whether this is the issue for the intra-site F1 case, we increased the Rydberg n-level

from 97 to 111, which should have improved the figure of merit by (111/97)11 = 4. No

improvement in F1 intra-site production was observed at n = 111. Similarly, we have also

not observed any improvement switching to the 97S Rydberg state, although RB also

decreases when switching to S.

As further evidence that long-range molecular evolution is not responsible for the F1

discrepancy alone, the long-range blockade interaction is well understood [64], but the
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intra-site long-range double excitation rate predicted by the model is significantly below

the double-excitation rate necessary to explain our intra-site data (Figure 2.5). Note also

that in the intra-site blockade case the geometry for long-range interactions is effectively

1 dimensional and the angular dependence to the interaction is negligible. Therefore it is

unlikely, that the long-range molecular decay is the the cause of the W-state amplitude

discrepancy, even though it explains the ensemble-ensemble interactions well. This has

led us to propose an additional unexpected mechanism at short-range, elaborated on in

the next section.

5.1.2 Short-Range Double Excitations

While the long-range interaction offers a satisfactory explanation for the ensemble-ensemble

Rydberg-Rydberg loss, it does not explain the magnitude of the intra-site blockade leak-

age necessary to explain our observations. Instead we investigate the possibility of a

short-range double Rydberg excitation mechanism. Note that calculating the interaction

potential in the spaghetti-regime (R < 4 µm for n ∼ 100) is notoriously difficult. In

this regime the number of nearby levels and higher-order interactions required to accu-

rately calculate the interaction energy increases substantially as the inter-atomic distance

decreases, R→ 0. The solutions also become highly sensitive to external fields, adding ad-

ditional technical complexity to the calculation. The density of weakly-coupled molecular

resonances may be enough to overcome the low coupling strengths and narrow resonances

to provide a mechanism for non-negligible coupling to molecular Rydberg states.

It has been shown that for Rydberg S-states molecular resonances begin occurring at

medium range R < 6 µm for n = 100[57], Figure 5.1. These resonances also have steeper

potential curves than long-range Van der Waals potentials, and can lead to significant

acceleration away from the resonant inter-atomic separation condition. In reference [57],

the authors calculate molecular loss rates for a homogeneous atom density, and derive an

effective dephasing term. We have verified the continuation of these molecular resonance
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patterns in Rydberg D-states, see Section 6.2.4 and Figure 6.11, but if a 1D geometry is

considered instead of the 3D geometry presented in the paper, little dephasing is expected.

This is because in a 3D sample the number of atoms in a spherical shell of radius R will

scale as the volume of the shell, but for a 1D sample the number of atoms in the shell has

no dependence on R. We do note, however, that the calculation for R < Rs is inaccurate

and the 1D geometry assumption becomes invalid at short range. Further, for our trap

parameters a 6 atom sample, on average, will have 7 out its 15 atom pairs with R < 5 µm.

Therefore, we suggest the mechanism from reference [57] as the most probable mechanism

for short-range blockade leakage.

Figure 5.1: Reprinted from reference [57]. Molecular interaction potentials centered
around the 100S + 100S Rydberg molecular state in the disassociation limit. The eigen-
state with dominant 100S+100S character is shown in blue and bolded. Blockade leakage
is possible at internuclear separations when the molecular potential is near the resonance
condition (0 on the graph). The resonances begin around R ∼ 6 µm and closer.

Besides short-range Rydberg blockade leakage, ground-Rydberg interactions are an-

other avenue to explain the apparent loss of Rydberg atoms in the data. For Rydberg

atoms with n ∼ 100 the electron cloud is extremely large and extends to a radius on the

order of 1 µm. There is a reasonable probability to have a ground state atom overlapping

the Rydberg electron wavefunction, which can cause potential shifts, due to the electron

scattering on the ground state atom, and even bound ground-Rydberg states[65, 66]. A

notably old result from Fermi shows the energy shift decreases with n but the effective
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number of atoms enclosed by the electron cloud increases, and the two effects cancel

the n dependence on average[67]. However, this is only the case for an isotropic density

distribution, and our 1D case changes the result in favor of energy shifts smaller than

the Rabi frequency. At our densities, the number of atom pairs that are close enough to

experience ground-Rydberg interactions are small. Additionally, this mechanism offers no

explanation for the increased ensemble-ensemble blockade effectiveness, which has been

observed.

Also of interest is the unusual observation, by Niederprüm et al. [51], of an anoma-

lously large Rb+
2 molecular ion formation cross section between a Rydberg atom and a

ground state atom. The cross section was observed to scale as the size of the Rydberg

atom and not the expected molecular ion internuclear separation which is three orders of

magnitude smaller. To explain this an ”efficient directed mass transport” mechanism was

posited, which serves to catalyze the associative ionization. This mechanism also suffers

from the low R < 1 µm event rate, however production of a molecular ion would massively

increase the ability to suppress subsequent excitations in neighboring sites.

We plan to test for short-range molecular resonance channels by overlapping a blue-

detuned 770 nm crossed dipole lattice in the axial dimension of the FORT sites, Figure

5.2. The lattice spacing will be 1.5 µm. The lattice will serve to impose a minimum

spacing between atoms, so if an improvement in N = 1 is observed with the extra lattice

we will be able to assume that the short-range molecular resonance hypothesis is correct.

5.2 Differential atom number test

Since the Rydberg state is anti-trapped in the FORT and possibly photoionized, the

ensemble population left in the Rydberg state will exhibit trap loss with high-fidelity.

Therefore instead of measuring the population that was successfully transferred from |0〉

to |1〉, the trap population can be used to measure Rydberg population in an ensemble.
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Figure 5.2: Cartoon of the superimposed 770 blue-detuned lattice and the 1064 FORT,
with approximate trap depths. (a) The potentials on axis (r = 0) are shown separately.
(b) The potentials are combined. Single atoms will sit in the lattice potential wells
separated by some minimum distance.

The only issue is that, due to the readout loss mechanisms discussed in the Section 7.1, the

measurement fidelity between 0 and 1 atom is significantly higher than the measurement

fidelity between n and n − 1 atoms. Therefore, with our apparatus it is not currently

possible to perform this measurement on a shot-by-shot basis and instead we must rely on

measurements of the atom distribution. This makes the experiment sensitive to changes in

the trap loading rate over the time scale of the measurement. To minimize the sensitivity

to loading rate drifts, the collective Rydberg πN̄ -pulse data sets are interleaved every 50

data points with background data sets where no excitation occurs. The combined data

sets are shown in Figure 5.3.

Under ideal conditions, the expected trap loss on average should be dependent on

the ensemble mean atom number as shown in Figure 5.3. If the reduced |0〉 → |r〉 → |1〉

transfer probability is due to a low collective excitation probability and not the stimulated

emission pulse, then we would expect to see a smaller difference in atom number than

Figure 5.3 suggests. If the reduction is due to the stimulated emission step, then we

should expect to see an atom number difference nearly equivalent to the simulated result.

A reduction above the result from Equation 2.6, shown as the black line suggests double

excitations and breakdown of blockade. Since we do not observe N = 2 Fock states, any
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Figure 5.3: (a) Example camera signal histograms for an ensemble of atoms after no
collective Rydberg pulse (solid blue) and a collective Rydberg πN̄ -pulse (dashed yellow).
The decrease in trap population is measured to be ∆N̄ = 0.99 atoms, with N̄ = 6.48(5)
using the techniques defined in Section 7.2.3. Using the discrete models instead of the
continuous changes the loss at the 0.01 atom level and the mean atom number by less than
1%. Data are from 4/26/2013. (b) A compilation of differential atom number data derived
from camera signal histogram data. The black line is the ideal collective excitation limit
for a Poissonian ensemble due to the atom Equation 2.6, with τ → ∞. Data above the
black line suggest the existence of double excitations to the Rydberg state. Data below the
black line suggest a lower collective excitation probability. Error bars are estimated error
due to typical daily scattering rate fluctuations, σΓ = εΓ = 0.045Γ, and the sensitivity to
the single atom scattering rate d(∆N̄)/dε = −1.37.
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double Rydberg excitations must not be addressable by the stimulated emission laser.

The results shown are not consistent, this is most likely due to atom number or single

atom scattering drifts during the experiment. The total MOT and repumper laser power

are stabilized before the switchyard where the X, Y, Z, and blow-away paths are siphoned

from the main beam. The servo improves the stability of the laser powers and consequently

the loading rate in the trap is more stable as well. However, the light coupled through the

fibers to the experiment are outside the servo loop and can drift unknown amounts during

an experiment since the powers are not monitored. In the next iteration of the hardware

discussed in Section 8.0.2, the 6 individual MOT beam powers can be monitored and

corrected during operation, which should serve to mitigate some of the technical issues

affecting this measurement.

The existence of loss data ∆N̄ near or above the theoretical limit and the measured

transfer rate to |1〉 is worth further investigation. A sequential loading test is discussed

below which uses the neighboring sites to test for residual Rydberg excitation is discussed

in Section 5.3.

5.3 Sequential Loading test

The results of Section 5.2 and Chapter 4 imply the existence of residual Rydberg excitation

not coupled down to the |1〉 state. In order to further test this, we sequentially excite

three FORT sites in a line axially separated by 9 µm and look for residual blockade in

the second and third site addressed, from the site addressed before it, see Figure 5.4. The

experiment in terms of operators is given by:

p
(k)
1 = |(〈1(k)| ⊗ 12)π̂

(1)1
1 θ̂

(1)0

N̄1
π̂

(3)1
1 θ̂

(3)0

N̄3
π̂

(2)1
1 θ̂

(2)0

N̄2
|0, 0, 0〉|2,

where the single atom populations in sites k = 1, 2, 3, p
(k)
1 , are measured simultaneously,

and the superscript in the parentheses denotes the ensemble number addressed. The
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background procedure is similar but with the FORT turned back on before addressing the

next site. Turning the FORT on after an N = 1 procedure removes any residual Rydberg

population from the trap and so each site should not be coupled to the other sites. This is

shown as the blue data in Figure 5.5, the yellow data shows the result of simultaneously

increasing the collective pulse area for the collective excitation pulse proportionally so

that each site reaches it’s collective πN̄ -pulse area in the same iteration. The data show

a few features of interest. First for short excitation times, θN̄ < 3π/4, there is little

ensemble-ensemble interaction and the F1 probabilities follow the same evolution as in

blue the uncorrelated case. Second, p
(3)
1 is decreased from 0.54(3) in the uncoupled case

to 0.39(3) when a collective πN̄ is performed on region 2 immediately before. This implies

that at least one atom is left in the Rydberg state from the region 2 excitation in at least

27% of the data sets. Likewise p
(1)
1 is decreased from 0.54(3) to 0.30(3), but the analysis

here is not as straightforward since excitations could be blockaded by residual Rydberg

population in either site 2 or 3. The correlations between the sequentially addressed sites

are strong evidence for high efficiency collective Rydberg excitation of at least one atom,

that is, however, not returned to the ground state via the π̂
(i)1
1 -pulse.
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Figure 5.4: Pulse sequence diagram for the sequential loading test, the same collective
pulse area θ̂

(i)0
Ni

is used for each ensemble for a given iteration, normalized for atom number
N̄i and single atom Rabi frequency Ω0. The FORT is turned off while all 3 ensembles
are addressed in order to maintain any correlations due to population remaining in the
Rydberg state. Ensembles are addressed in the order: 2 ⇒ 3 ⇒ 1. (a) The ideal
case where no population (blue circles) is left in the Rydberg state between W-state
preparation operation. The blockade radius for the Rydberg excitation is shown as a
gray oval around the Rydberg excitation. A single atom in each ensemble is successfully
prepared in the |1〉 state. (b) An example of a long-range double excitation in the the
first ensemble address (region 2). The double excitation is shown as a pair of purple
circles to indicate that the Rydberg pair has evolved into a molecular state that is dark
to the Rydberg lasers. The atoms remain in this excited state until the FORT is turned
back on when they are ejected. The blockade radius here is shown to take up a larger
area, implying a strong blockade across the ensembles in regions 1 and 3, therefore no |1〉
population will be measured in any region. A double excitation in region 3 (the second
ensemble to be addressed) would similarly cause Rydberg excitation suppression in region
1, but would not effect region 2.
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Figure 5.5: The data shown are N = 1 Fock state preparation procedures in 3 sites
(regions 1(c), 2(a), and 3(b)) when performed in separate FORT drops where remaining
Rydberg population is lost (blue) and when performed back-to-back in the same FORT
drop (yellow). The three sites are addressed in the order: 2→ 3→ 1 and an approximate
20% reduction in |0〉 → |r〉 → |1〉 transfer probability is observed in each subsequent
site that is addressed in the back-to-back procedure compared to the separate addressing
procedure. The discrepancy implies that there is residual Rydberg population left after
the stimulated emission R1(π) pulse. Error bars are statistical. The data has not been
corrected for the imperfect state-selective readout. Data are from 7/01/2014.
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Chapter 6

Single Atom and Ensemble

Dynamics

In this chapter modeling realistic single-atom and ensemble Rydberg excitation dynamics

is discussed. We begin by discussing the sources of inhomogeneous broadening such as

Doppler shifts (Section 6.1.1), AC Stark shift gradients (Section 6.1.1), and intermediate

state scattering (Section 6.1.2). In Section 6.2, the formalism for ensemble excitation is

presented in two state bases, the internal state basis (Section 6.2.1) and the Dicke basis

(Section 6.2.1). Homogeneous ensemble excitations with and without perfect Rydberg

blockade are presented. Sources of amplitude degradation and decoherence are introduced,

including the sources of inhomogeneous broadening discussed earlier, but now in the

context of collective ensemble excitations and W-state fidelity (Section 6.2.3). We also

introduce a simple imperfect Rydberg blockade potential into the formalism (Section

6.2.4).

6.1 Single Atom Excitation

The non-ideal effects present in ensembles of interacting atoms are mostly present in sin-

gle atom excitations as well, so we begin by discussing these effects in this comparatively
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easier non-interacting regime. The effects of a single atom in a near-resonant light field

can be broken down into spatially-dependent, velocity-dependent, and internal effects.

Spatially, we are concerned with the atom sampling the spatial inhomogeneity of the ex-

citation beams as well as the position dependent AC Stark shifts. The thermal velocity

of the atoms in the beams leads to a velocity dependent detuning from the differential

Doppler shifts. Additionally, there are deleterious effects from having a finite intermedi-

ate state detuning during the two-photon transition. If we were instead to use a single

photon transition, then the AC Stark shifts and finite intermediate state detunings would

no longer contribute, but the Doppler shift wouldn’t partially cancel and the temper-

ature would become more critical. In this analysis we ignore the effect of shot-to-shot

power fluctuations since the laser powers are servoed and monitored to remove data where

power fluctuations exceed a given range around nominal. We also assume Rydberg laser

linewidths significantly narrower than any relevant spectral features, which is also valid

for our experiment.

6.1.1 Inhomogeneous Broadening

Inhomogeneous broadening is a class of broadening mechanisms that effect each atom in

a sample differently based on its location, velocity, and interactions with other atoms.

The atoms will evolve coherently, but with different rates due to atom specific differences

in coupling and detuning. However, when the atoms are not resolvable inhomogeneous

broadening appears to dephase the evolution. This is different than, for example, scatter-

ing which does in fact dephase evolution even if the atoms are resolvable.

Doppler Shifts

The Doppler shift is a special relativistic frequency shift due to the velocity of the atom

along the propagation axis of the laser beam relative to the lab frame. The frequency

shift is given by δ = −k̄ · v̄, where k̄ is the wavevector of the laser and v̄ is the atomic
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velocity in the relevant reference frame. In this experiment, the Rydberg excitation lasers

are counter-propagating so the differential Doppler shift is given by: ∆D = −k′vz, where

k′ = k1 − k2 and ki is the wavenumber of the ith beam. The closer the excitation laser

wavelengths are, the smaller the differential light shift and the broader the addressable

velocity class. In this experiment λ1(2) = 780(480) nm, and k′/2π = 0.8 MHz/(m/s).

The Doppler shift does not depend on the laser power so increasing the intensity of the

excitation laser decreases the sensitivity to thermal velocities.

The effect of Doppler broadening in a non-interacting ensemble can be estimated

analytically. The velocity distribution in z is given by:

σvz =

√
kBT

m
, (6.1)

where m is the atomic mass. The detuning distribution is then:

σ∆D
= k′σvz . (6.2)

The expression for the excitation probability of a coherently driven near resonant two-level

system with Rabi frequency Ω and detuning ∆ is given by the familiar expression:

Pe(t) =

(
Ω

Ω′

)2

sin2 (Ω′t/2) , (6.3)

where Ω′ ≡
√

Ω2 + ∆2. After a time t = π/Ω′ the system is maximally inverted with

amplitude A(δ) = (1 + δ2)−1, where δ ≡ ∆/Ω is the normalized detuning. In the regime

of small δ the frequency error effect on the amplitude is approximated as:

sin2
[√

(1 + δ2)π/2
]
≈ 1− π2δ4

16
+O(δ6),

for an ideal π-pulse (tπ = π/Ω). The amplitude term, A(δ) = (1 + δ2)−1 ≈ 1− δ2 +O(δ4),
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dominates the deviation from unity inversion. In the remainder of this section, we expand

on this basic result to develop an analytic expression for the average amplitude for some

Gaussian detuning distribution σδ.

The amplitude probability density function (PDF) at t = tπ, due to a distribution of

Doppler shifts with normalized width σδ ≡ σ∆D
/Ω, is given by:

P (A′) = lim
ε→0

[
2

ε

∫ A−1(A′+ε/2)

A−1(A′−ε/2)

1

σ
√

2π
e−(δ/

√
2σδ)

2

dδ

]
=

1

σδA′3/2
√

2π (1− A′)
exp

[
(A′ − 1)/(2A′2σ2

δ )
]
.

(6.4)

Note that P (A′) is singular at A′ = 1, but since the physically relevant parameter

P (A1 < A′ < A2) =
∫ A2

A1
P (A′)dA′ is finite for A2 = 1, this is not a concern. The

cumulative distribution function (CDF) P (0 < A′ < A2) is shown in Figure 6.1(a) for

σδ = {0.01, 0.05, 0.1, 0.3}, which for Rb87 corresponds to T = {1.6, 41, 160, 1500} µK at

Ω = 1 MHz. The CDF is useful for comparing probability distributions of greatly different

widths without a log scale, since the magnitude is constrained. For example, having a

CDF that spikes quickly is indicative of a repeatable amplitude, while a CDF that rises

slowly will have a larger amplitude distribution.

The expectation value for A is given by:

〈A(σδ)〉 =

√
π

2σ2
δ

(
1− erf

[
1/(
√

2σδ)
])
e1/(2σ2

δ ).

The result of 〈A(σδ)〉 is shown in Figure 6.1(b) along with a numerical evaluation of

(1 + δ)−1 sin
[√

(1 + δ2)π/2
]
, with the same σδ, for comparison.

Expected parameters for our single atom excitation are: Ω = 0.7 MHz, k′ = 0.8

MHz/(m/s), T = 100 µK. The width of the Doppler detuning is σD = 78 kHz and

σδ = 0.11. Therefore the projected amplitude is 〈A(0.11)〉 = 0.988, a 1.2% deviation from

the ideal excitation rate due to Doppler broadening.
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Figure 6.1: (a) Cumulative distribution function for the excitation amplitude A of
a near resonant two-level system with on resonance Rabi frequency Ω and a normal
detuning distribution of width σδ = σD/Ω = {0.01, 0.05, 0.1, 0.3} shown in red, green,
yellow, and blue respectively. The points on the graph denote the mean amplitude for
the corresponding value of σδ. For Rb87 atoms with Ω = 1 MHz and k′ = 0.8 MHz/(m/s)
the σδ’s represent Doppler broadening due to temperatures of T = {1.6, 41, 160, 1500}
µK. (b) The mean excitation amplitude 〈A〉 as a function of σδ is shown in black, plotted
along a numerical calculation of the full expression (Equation 6.3) shown as a dashed gray
line. The points represent where the CDF lines in (a) are located.

Differential AC-Stark Shifts

Spatially dependent AC Stark shifts during excitation pulses are a consequence of the

2-photon transition used to couple the atom to the Rydberg state. The Hamiltonian for

the 3-level system {|1〉, |e〉, |r〉}, with no spontaneous emission, is given by:

H =


0 Ω1/2 0

Ω1/2 ∆ Ω2/2

0 Ω2/2 δ2γ

 ,

where Ω1(2) is the Rabi frequency of the 780(480) nm photon, ∆ is the intermediate

state detuning, and δ2γ is the 2-photon detuning, as depicted in Figure 1.9. For ∆ �

{δ2γ,Ω1,Ω2}, the population in state |e〉 is small and oscillates rapidly allowing us to per-

form an adiabatic elimination, c′e(t) = 0 = − i
2

(Ω1c1(t) + Ω2c2(t) + 2∆(t)ce(t)). Making
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the replacement ce(t) = − 1
2∆

(Ω1c1(t) + Ω2c2(t)), results in the effective Hamiltonian:

Heff =

 0 Ω2γ

2

Ω2γ

2
δ2γ − δAC

 , (6.5)

where Ω2γ ≡ Ω1Ω2/(2∆) is the 2-photon Rabi frequency and δAC ≡ (Ω2
1 − Ω2

2) /(4∆) is

the differential AC Stark shift. The differential AC Stark shift is minimized when the

single photon Rabi frequencies are equal Ω1 = Ω2. In our case Ω1 ∼ 10Ω2 so we are

dominated by the spatial inhomogeneity of the 780 nm laser.

Since the atomic cloud has some finite extent and the addressing lasers have a narrow

waist to achieve low-crosstalk site-selective addressing, the atom will sample different laser

intensities each iteration. This causes differences in the excitation parameters shot-to-shot

due to spatially dependent Ω2γ(x̄) and δAC(x̄). Most of the effect of differential AC Stark

shifts in our system can be obtained by considering only the 780 shift due to the variation

of the radial coordinate r in the beam since the extent of the atomic cloud is substantially

shorter than the Rayleigh length, σz � zR.

To do this we will employ a method similar to the previous section. There is an

additional complication though since the AC Stark shift is not symmetric about δ = 0

like the Doppler shift. Mitigating this will require that the 2-photon detuning is set to the

mean shift to minimize detuning errors, δ2γ = 〈δAC〉. The PDF for the atomic position in

cylindrical coordinates is:

P (ρ) =
2ρ

σ2
ρ

e−(ρ/σρ)2 , (6.6)

and therefore the PDF for the AC Stark shifts, assuming the 780 and 480 nm laser waists

are equal ω = ω1(2), is related to the PDF for Ω2 = Ω2
1 − Ω2

2 via a change of variable
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transformation:

P (Ω2) = lim
ε→0

[
2

σ2
ρε

∫ (Ω2)−1(Ω2−ε/2)

(Ω2)−1(Ω2+ε/2)

ρe−(ρ/σρ)2dρ

]
=

ω2

2σ2
ρΩ

2

(
Ω2

Ω2
0

)ω2/(2σ2
ρ)

=
χ2

2Ω2

(
Ω2

Ω2
0

)χ2/2

,

(6.7)

where χ ≡ ω/σρ and the domain of P (Ω2) is Ω2 ≤ Ω2
0. If matched beam waists are

assumed (ω1 = ω2), the detuning distribution is:

P (δAC) =
χ2

2δAC

(
δAC
δ0
AC

)χ2/2

, (6.8)

where the domain of P (δAC) is 0 ≤ δAC ≤ δ0
AC ≡ Ω2

0/(4∆). The mean shift 〈δAC〉 under

these conditions is given by:

〈δAC〉 =
δ0
AC

1 + 2χ−2
(6.9)

To minimize the differential AC Stark shift the laser waists must be significantly larger

than the atom cloud (χ � 1). Note that since ω1 = ω2 is assumed, the analysis can be

extended to derive an expression for the mean two-photon Rabi frequency:

〈Ω2γ〉 =
〈Ω1Ω2〉

2∆
=

1

1 + 2χ−2

(
Ω

(0)
1 Ω

(0)
2

2∆

)
(6.10)

Generating an analytic result for the amplitude PDF can be done, however since the

detuning is asymmetric with respect to the mean shift the calculation becomes difficult

and not particularly enlightening. Monte-Carlo simulations of the amplitude PDF and

time series models at different temperatures are shown in Figure 6.2.

Expected parameters for our single atom excitation are: Ω = 0.7 MHz, T = 100 µK,

χ = 15.1, and δ0
AC = 3.47 MHz. Therefore the projected amplitude is 〈A〉 = 0.998, a 0.2%

deviation from the ideal excitation rate due to AC Stark shift broadening.
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Figure 6.2: (a) Monte-Carlo simulations of the mean excitation amplitude A of a two-level
atom vs peak AC Stark shift, δ0

AC/Ω
0
2γ, for different values of χ ≡ ω/σρ = 12.34 (blue),

6.76 (orange), and 3.90 (yellow). These values of χ correspond to Rb87 temperatures of
150, 500, and 1500 µK respectively with a ω = 8 µm excitation beam waist. (b) The
excitation probability is shown as a function of time for the same χ values and with
δ0
AC = 4.95Ω0

2γ. Only AC Stark shifts are included in the model.

6.1.2 Intermediate State Scattering

Coherent two-photon excitation processes are typically performed with the constituent

laser frequencies near an intermediate state transition in order to increase the Rabi fre-

quency. For a two-photon process, the Rabi frequency, Ω2γ, is given by:

Ω2γ =
Ω1Ω2

2∆
,

where ∆ denotes the detuning from the intermediate state. Decreasing ∆ increases the

Rabi frequency allowing excitation pulses to occur in less time, but this comes at the

cost of increasing the intermediate state population. Since the intermediate state has a

finite scattering rate that is significantly faster than the two-photon Rabi frequency, any

population build up in the intermediate state will be redistributed in the ground state

magnetic sub-levels, most of which are not addressable by the Rydberg lasers, due to the

large magnetic field present during an excitation, and therefore cease participating in the

computation. However the atoms continue to be trapped and the magnetic sub-levels are

not distinguishable by the state-selective readout procedure that we implement, and can
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show up in potentially erroneous F -states during the readout.

The probability of an intermediate state scattering event occurring during a π-pulse

is given by [26]:

Pse =

(
πΓ

4∆

)
(q + q−1),

where q ≡ |Ω2/Ω1| and Γ is the intermediate state scattering rate. As with the AC

Stark shift errors, the system is optimal when q = 1. For us typically q = 0.1, since

the transition matrix element for 5P3/2 → nD5/2 is so much much smaller than the

5S1/2 → 5P3/2 transition. This limits the achievable single-photon Rabi frequency for the

blue laser. With our parameters we expect a spontaneous emission event probability of

Pse = 2.3% for a π-pulse.

6.2 Ensemble Excitation

The single atom modeling technique discussed is sufficient for non-interacting atom sam-

ples, but is not capable of describing ensembles with large interactions accurately. In

order to model systems with large interactions, the system cannot be treated as inde-

pendent components with independent energy levels. Instead we must write down the

Hamiltonian in a basis that is convenient, then if necessary transform to a basis that is

convenient to model the evolution. The bases that are well suited for these tasks are

discussed in Sections 6.2.1 and 6.2.1.

In this section, the W-state is discussed in depth and the ensemble excitation formal-

ism is presented. Then the effects of inhomogeneous broadening and intermediate state

scattering will be discussed in the context of Rydberg ensembles. The effects of finite

Rydberg blockade interactions will also be addressed.
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6.2.1 The W-state

The W-state, or |1̄〉, is an entangled state of N two-state systems defined by Equation

1.1. Creation of the |1̄〉 state can be accomplished stochastically, via a short excitation

pulse[56], or deterministically, using a process that limits the Hilbert space of the ensem-

ble. By performing an excitation to the Rydberg state under strong blockade conditions,

the effective Hilbert space is limited to |0̄〉 ≡ |0(1)...0(N)〉 and |1̄〉 (ignoring effects of

inhomogeneous broadening), which allows for deterministic preparation of |1̄〉.

Some of the properties of the |1̄〉 state are non-intuitive to those familiar with a typical

non-interacting ensemble, and it is helpful to demonstrate some fundamental properties.

We will consider the system to consist of N spin 1/2 particles, |0(1)〉 → |− (+)〉, and will

investigate the problem in two bases: the internal state basis (|±(1)〉 ⊗ |±(2)〉 ⊗ ...|±(N)〉)

and the Dicke basis (|JM〉). For more information, the interested reader should refer to

[68].

Internal State Basis

The interaction of a generic ensemble excitation with a light field can be written in

the basis of individual atom excitations (|±(1)〉 ⊗ |±(2)〉 ⊗ ...|±(N)〉). The interaction

Hamiltonian, Hint, describing the evolution of the system is a block tridiagonal matrix

where the basis states associated with main block diagonals, ∆n, are degenerate under

the excitation Fock state operator, N̂ ≡
∑N

k=1 Ŝ
(k)
z +N/2, where Ŝ

(k)
µ = 1

2
σ̂

(k)
µ is the spin

projection operator along the axis defined by µ. The basis states of the system are denoted

as |nk〉, where n denotes the eigenvalue of N̂ and the index k breaks the degeneracy of

the operator, e.g. |11〉 = | + − · · ·−〉, |12〉 = | − + − · · ·−〉, and |21〉 = | + + − · · ·−〉.

The matrices on the other diagonals couple the system between excitation number (Fock)

states, i.e. a double excitation occurs by coupling a singly excited state, |1k〉 to a doubly

excited state |2j〉, instead of second order process directly from the ground state. In this
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basis Hint is given by:

Hint = A + ∆ =

∆0 A(0,1) 0 · · · 0

AT
(0,1) ∆1 A(1,2)

0
. . . . . . . . .

...

AT
(n−1,n) ∆n A(n,n+1)

...
. . . . . . . . . 0

AT
(N−2,N−1) ∆N−1 A(N−1,N)

0 · · · 0 AT
(N−1,N) ∆N



(6.11)

The matrix Hint dimension is 2N , the dimension of N 2-level systems. The dimen-

sion of the block diagonal sub-matrices is given by the binomial coefficient, dim (∆n) =(
N
n

)
≡ Nn. The block diagonal sub-matrices, ∆n, contain information concerning the

sub-system’s specific energy levels.

∆n =
Nn∑
k=1

δ
(n)
k |nk〉〈nk| (6.12)

∆n =



δ
(n)
1 0 · · · 0

0 δ
(n)
2 · · · 0

...
...

. . .
...

0 0 · · · δ
(n)
Nn


, (6.13)

where δ
(n)
k refers to the energy of the kth basis state in the subspace with eigenvalue n.

The coupling sub-matrices, A(n,n+1), contain the specific coupling strength between

each subsystem’s spin up and down states, |−(k)〉 ↔αk |+(k)〉. The matrix elements are

given by: [
A(n,n+1)

]
(i,j)

= |(n+ 1)i〉〈(n+ 1)i|Â|nj〉〈nj|, (6.14)
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where the operator Â is given by:

Â =
N∑
k=1

αk

(
1⊗(N−1) ⊗ Ŝ(k)

x

)
. (6.15)

In other words, two states only have non-zero coupling matrix elements if they differ only

in the excitation state of a single sub-system.

It is convenient to investigate inhomogeneous effects and system-specific couplings

using this formalism. For example, perfect Rydberg blockade can be implemented by

removing all states with n > 1, dramatically reducing the size of the dimension of the

problem from 2n to n + 1. Near perfect blockade can also be implemented by removing

n > 2 and adding in the interaction energies to ∆2. Inhomogeneous broadening can be

added by inserting appropriate values for δ
(n)
k and αk.

For a first attempt at modeling the system, consider the homogeneous case where

[∆n](i,j) = 0 and α = αi. This is a typical model for a non-interacting ensemble, so

we should intuitively expect to observe full inversion of the atomic population from the

ground to the excited state for all N atoms. The time evolution of this system is plotted

in Figure 6.3 for different observables |〈n|ψ(t)〉|2(a), 〈N̂(t)〉(b).

By including a blockade shift, δ
(n>1)
k = δdd >> α, the Hilbert space of the problem is

reduced to n = {0, 1}, and Hint becomes:

Hint =



0 α1 α2 · · · αN

α1 δ
(1)
1 0 · · · 0

α2 0 δ
(1)
2 0

...
...

. . .
...

αN 0 0 · · · δ
(1)
N


(6.16)

The detunings δ
(1)
k are nominally 0, so it makes sense to treat the δ(1) entries as a per-

turbation. Under the condition of perfect blockade, the energy eigenstates of A are the 2
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Figure 6.3: Example homogeneous (a,b) and blockaded (c,d) Rabi oscillations with N = 3
atoms with initial state |0̄〉. (a) The average excitation number and (b) the excitation
Fock state probabilities as a function of coupling time for an uncoupled sample. (c) The
average excitation number and (d) the excitation Fock state probabilities as a function of
coupling time for a blockaded sample.

dressed states with total angular momentum J = N/2, 1√
2

(|0̄〉 ± |1̄〉), and the N − 1 or-

thogonal states with J = (N/2−1): |(1̄)⊥〉, where |1̄〉 ≡
∑N

k=1
αk
αN
|1(k)〉 and α2

N ≡
∑N

k=1 α
2
k.

If the initial state is |0̄〉, then the system will remain in the symmetric subspace defined

by {|0̄〉, |1̄〉}. The eigenvalues determine the rate that population amplitudes will oscil-

late, for 1√
2

(|0̄〉 ± |1̄〉) this speed is ±αN implying a collective enhancement of
√
Nα with

homogeneous coupling strengths, see Figure 6.3(c,d). The collective enhancement of the

Rabi frequency is the hallmark of a strongly blockaded ensemble[18–21].

Dicke Basis

If the homogeneous problem is reformulated in the total angular momentum basis |J,M〉,

it is compartively easier to see the collective Rabi frequency enhancement. In this basis

the quantum numbers that describe the system are the total angular momentum J , with

associated operator Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z , where Ĵµ =

∑N
k=1 Ŝ

(k)
µ , and M is the eigenvalue of

the Ĵz operator. The interaction Hamiltonian is still given by Hint = A + ∆, and since

A cannot couple states of unequal angular momentum, the evolution of the system is
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constrained to J = J(t = 0), to the extent that ∆ is negligible. The typical initialization

condition is |ψ(t = 0)〉 = |0̄〉 ≡ |N/2,−N/2〉 which can only evolve into state with the

maximum total angular momentum. The Dicke states |J = N/2,M〉 = |M〉 are equivalent

to the set of N + 1 symmetric states {|0̄〉, |1̄〉, |2̄〉, · · · , |N̄〉}. When a binary interaction

energy sufficient to neglect double excitations is included as before, we are left only with

the | − N/2〉 = |0̄〉 and | − N/2 + 1〉 = |1̄〉 states which form an effective 2-state system

for the ensemble.

Explicitly, the Hamiltonian in the Dicke basis is given by:

H =
J∑

k=−J

δk|k〉〈k|+
α

2

J∑
m=−J

√
(J −m+ 1) (m+ J)

(
|m− 1〉〈m|+ |m〉〈m− 1|

)
. (6.17)

This exactly reproduces the results of the substantially larger dimensional system, for

the homogeneous case with initial condition J = N/2, since the dark states with J <

N/2 are ignored. The generic collective enhancement factor is contained in the term

ε ≡
√

(J −M + 1)(J +M), where M is the quantum number for the higher state in the

excitation ladder. This reduces to the familiar ε =
√
N expression when M = −J + 1.

In this formalism, it is clear that the excitation enhancement factor is inherent in any

ensemble excitation, a blockade interaction simply limits the Hilbert space making the

increased oscillation frequency clearly observable.

6.2.2 Rydberg Ensemble Formalism

For this system we will consider the ”good quantum number” to be the number of excited

atoms within the ensemble, because the Blockade shift will limit the number of energet-

ically allowed excited states in the system. In the case of perfect blockade the system is

limited to a single excitation. For our system the blockade is not perfect, but a triple

excitation state can be ignored so we will allow for at most a double excitation. Therefore
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the generalized case of Equation 6.11 becomes:

Hint = A + ∆ =


∆0 A(0,1) 0

AT
(0,1) ∆1 A(1,2)

0 AT
(1,2) ∆2

 , (6.18)

where the atom-specific energy levels are encoded as:

∆0 = 0

∆1 =
N∑
k=1

(δ + δD(vk) + δAC(xk))|r(k)〉〈r(k)| ≡
N∑
k=1

δ(k)(xk,vk)|r(k)〉〈r(k)|

∆2 =
N∑
j=1

k<j∑
k=1

(
δ(j)(xj,vj) + δ(k)(xk,vk) + ∆

(j,k)
dd (|xj − xk|)

)(
|r(j,k)〉〈r(j,k)|+ c.c.

)
,

(6.19)

where δ is the laser detuning from the free-space resonance, δD(v) = −k · v is the differ-

ential Doppler shift from the motion of the atom in the two-color light field, δAC(x) is the

position dependent AC-Stark shift of the atom in the light fields, and ∆
(j,k)
dd (|x1 − x2|) is

the dipole-dipole interaction of the doubly excited state. The single and double Rydberg

excited states are denoted as |r(j)〉 and |r(j,k)〉, where j and k are the excited atom indices.

To coupling sub-matrices for n ≤ 2 are explicitly:

A(0,1) =
1

2

N∑
k=1

αk|r(k)〉〈0̄|

A(1,2) =
1

2

N∑
k=1

N∑
j=1,j 6=k

αk|r(j,k)〉〈r(j)|.
(6.20)
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For N = 3 atoms the Hamiltonian can be written as:

H =
1

2



0 α1 α2 α3 0 0 0

α1 δ(1) 0 0 α2 α3 0

α2 0 δ(2) 0 α1 0 α3

α3 0 0 δ(3) 0 α1 α2

0 α2 α1 0 ∆
(1,2)
2 0 0

0 α3 0 α1 0 ∆
(1,3)
2 0

0 0 α3 α2 0 0 ∆
(2,3)
2



. (6.21)

Here δ(k) = δ+δD+δAC is used for clarity to represent the sum of all single atom detuning

contributions. Likewise, ∆
(j,k)
2 = δ1 + δ2 + ∆

(j,k)
dd represents the single atom detunings and

the Rydberg interaction of atoms j and k.

The effect of inhomogeneous broadening can be modeled in a Monte Carlo simulation

using the Hamiltonian above. Since the scattering off the intermediate state is small

(∼ 0.02/
√
n per atom) we do not account for re-population of the ground state as it would

require either a density matrix approach or a Monte Carlo Wavefunction solution [69],

both of which would add significant computational overhead especially for large numbers

of atoms. Instead we implement the intermediate state scattering as a non-Hermitian

modification to the Hamiltonian, by replacing the intermediate state detuning ∆ with

∆ + iΓ/2 in the AC Stark Shift term δAC . The effect of this is that there is population

leakage out of the system at the rate of intermediate state scattering events, so the system

amplitude will drop from 1 over time and re-population of |0〉 is ignored.

Additionally, since we are not interested in small blockade leakage effects at this

juncture we can reduce the dimension of the problem further by removing all well-

blockaded doubly excited states. This is done by defining a cutoff blockade shift (typically

∆dd > 10α) and removing doubly excited states matching the criteria from the problem

space. This leaves intact the dynamics from unblockaded long range atom pairs, but
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disregards the doubly excited fraction estimated in [26]. Using a standard propagator

method and the dimension reduction technique described we can model the dynamics

with ensembles of up to N = 40 atoms regularly on a standard laptop computer.

6.2.3 Inhomogeneous Broadening

The ideal blockaded ensemble solution was discussed in Section 6.2.1. In this section, we

build on the previous results adding in the effects of inhomogeneous broadening. The

sources of inhomogeneous broadening for infinite blockade are the single-atom effects

introduced in Section 6.1. Because inhomogeneous broadening is a source of coupling into

singly-excited states with no W-state amplitude, denoted |(1̄)⊥〉, the implications will be

discussed here.

For the case of a two-level system the excited state amplitude is given by:

ce = −i Ω

Ω′
sin(Ω′t/2)e−iδt/2, (6.22)

where the probability of being detected in the excited state is pe = |ce|2, and Ω′2 ≡ Ω2+δ2.

At small times t, atoms in a blockaded ensemble evolve similarly to independent two-

level systems, since the probability of a double excitation is low. In an ensemble, the

term, e−iδ
(j)t/2, enables the coupling to |(1̄)⊥〉, due to inhomogeneous phase discrepancies

φj = δ(j)t/2. Therefore, we write the resulting state after a near-ideal π-pulse, tπ = π/Ωn,

in terms of each atom’s specific phase φj:

|ψ(tπ)〉 =
1

N

N∑
j=1

e−iφj |1j〉.

Note that |ψ(tπ)〉 is constructed so that p1 ≡ 1. Now, the projection onto the W-state is
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given by:

pW = |〈1̄|ψ(tπ)〉|2

=
1

N2

∣∣∣∣∣
N∑
j=1

cos(φj)− i sin(φj)

∣∣∣∣∣
2

=
1

N2

(
N∑
j=1

cos(φj)

)2

+
1

N2

(
N∑
j=1

sin(φj)

)2

≈ 1

N2

N2 −N
N∑
j=1

φ2
j +

(
N∑
j=1

φj

)2


(6.23)

Since the probability to not have amplitude in the W-state is given by p⊥ = p1 − p1̄,

where for the assumed |ψ(tπ)〉, p1 ≡ 1, the projection onto the |(1̄)⊥〉 basis is then:

p⊥ ≈
1

N2

N N∑
j=1

φ2
j −

(
N∑
j=1

φj

)2
 (6.24)

Notice that for large N the first term dominates. Therefore let us assume that the

distribution is dominated by the first term and we will apply a corrective coordinate shift

equal in magnitude to the mean of the second term later.

p⊥ ≈
1

N

N∑
j=1

φ2
j (6.25)

We can continue the analysis if we assume a specific shape for the detuning distribu-

tion. For a Gaussian distribution of phase errors, σ ≡ σφ/Ω = 2σδ/
√
N , the PDF for the

first term is given by:

P (p⊥) ∼=
N(Np⊥)(N−2)/2

(σ
√

2)N
[
Γ(N

2
)− Γ(N

2
, N

2σ2 )
]e−Np⊥/2σ2

. (6.26)

For our atom numbers (N ∼ 10), the corrective coordinate transform, p⊥ → p⊥ +

〈
(∑

j φj

)2

〉 = p⊥ + σ2/N , for the second term in Equation 6.24 is non-negligible. With
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the coordinate transform added in Equation 6.26 becomes:

P (p⊥) =
N(Np⊥ + σ2)(N−2)/2

(σ
√

2)N
[
Γ(N

2
)− Γ(N

2
, N

2σ2 )
]e−(Np⊥/σ

2+1)/2. (6.27)

The mean of Equation 6.27 can be calculated analytically and is given by:

〈p⊥〉 = σ2

[
Γ(N

2
)

Γ(N
2

)− Γ(N
2
, N

2σ2 )
− 1

N

]
. (6.28)

The results of Equations 6.27 and 6.28 are shown in Figure 6.4 for N = 6 and 10.
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Figure 6.4: (a) Probability density functions for the projection into the non-W-state basis
|(1̄⊥〉 with Gaussian detuning distributions, where σδ = {0.01, 0.05, 0.1, 0.3} = σ∆/Ω is
denoted by red, green, yellow and blue curves respectively. For our system the σδ values
correspond to Doppler shifts of temperature T = {1.6, 41, 160, 1500} µK. The solid
lines are for N = 6 and dashed denotes N = 10. (b) The mean projection into |(1̄)⊥〉
as a function of σδ. Black curves are Equation 6.28 and gray are from a Monte Carlo
simulation. The solid lines are calculated for N = 6 and the dashed lines are with N = 10.

It is an intrinsic feature of theW-state that the sensitivity to detuning errors decreases

with increasing atom number. This is due entirely to the
√
N Rabi frequency enhancement

which lowers the significance of the detuning errors by the same factor. Therefore:

P (p⊥) ∝ σ2 ∝ 1/N, (6.29)

and to the degree that detuning errors are the dominant contribution to the infidelity the

fidelity can be improved by increasing the atom number. Increasing the atom number
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too much, however, can jeopardize the blockade figure of merit: ∆dd/
√
NΩ, so a balance

must be reached. Additionally increasing the atom number will exacerbate any density

dependent effects, which are hypothesized to contribute to the amplitude discrepancy

observed in the W-state production probability.

Additionally a time series Monte Carlo with N = 6 atom is shown in Figure 6.5 to

demonstrate the relative contributions of differential AC Stark shifts and Doppler shifts.

For our experimental parameters, the contribution to |(1̄)⊥〉 is dominated by Doppler

shifts, and P (p⊥) ∼ 3%. At temperatures of just 50 µK the AC Stark shift contribution

is less than 0.2%, with P (p⊥) ∼ 0.8%.

Figure 6.5: (a) Monte Carlo model of the N = 1 Fock state during a collective Rabi
oscillation with N = 6 atoms and inhomogeneous broadening from Doppler broadening
(blue), and both Doppler Broadening and AC Stark shifts (yellow). The results are shown
for temperatures of 150 (solid) and 50 (dashed) µK. (b) The leakage into |(1̄)⊥〉 due to
the same inhomogeneous broadening effects. Intermediate state scattering is not included
in the model. The detuning is adjusted to cancel the mean AC Stark Shift. Note that
the peak |(1̄)⊥〉 population occurs at the 2π-pulse time not at the π-pulse time.

While high fidelity intra-siteW-state entanglement due to inhomogeneous broadening

is not necessary to explain the Rydberg Rabi oscillation dynamics from Chapter 2, or the

ensemble-ensemble blockade dynamics in Chapter 4 it becomes important when consider-

ing the coherence time for a quantum memory. This can be demonstrated by considering

an ensemble with the general form for the singly excited state given by
∑

k
Ω(k)

Ω′N
|k〉, where

Ω′2N ≡
∑

k(Ω
(k))2. The individual atom Rabi frequencies, Ω(k), will change as the atom

changes velocity and position during a long evolution time and after a certain amount of
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time will no longer map the initial single excited state back to |0̄〉 after a πN -pulse.

6.2.4 Imperfect Rydberg Blockade

Sources of inhomogeneous broadening are well understood in the context of non-interacting

atoms as demonstrated in the previous section However, imperfect Rydberg blockade can

add significant non-intuitive behavior to the problem. Imperfect blockade in this context

means that the ensemble is almost fully blockaded, ∆dd � ΩN , but there are atom pairs

such that the blockade shift, ∆dd, is on the order of or less than the enhanced Rabi fre-

quency, ΩN . This breakdown of strong blockade can be due to either long range atom

pairs or short range molecular crossings [57]. Long-range atom pairs are straight forward

to add into the model system described by Equation 6.18 once a simple interaction energy,

Udd(R), is known. Alternatively, short-range interactions are difficult to calculate due to

the sheer number of states that can be mixed due to the scale of the Rydberg-Rydberg

interaction at small R[59]. Both regimes will be discussed here.

Long-Range Atom-Pairs

The effective 1-dimensional geometry of our traps allow us to formulate the problem in

terms of the interatomic separation parameter, R, only, with no angular terms. At long

range the dipole-dipole interaction scales as R−6, so the force between the two atoms scales

as R−5 resulting in little change in velocity for a long-range Rydberg pair over a few µs.

For the 97D5/2,mj = 5/2 Rydberg state typically used, R = 16 µm when Ω1̄0(R) = ∆dd,

and a = − h
m
∇∆dd = 0.008 µm/µs2. Therefore, a frozen gas model is sufficient on the 5

µs timescale of the experimental sequence. The Monte-Carlo simulation shown in Figure

6.6 shows the result of long-range atom pair for different temperature atom clouds with

N = 6 atoms. All analysis done in this section is with |r〉 = 97D5/2,mj = 5/2 and Ω1 = 1

MHz.

The atom cloud size grows as
√
T , so the higher the temperature, the more likely
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Figure 6.6: Collective Rabi oscillations for N = 6 for our typical experimental parameters
with temperatures T = {10, 100, 150, 300} µK corresponding to blue, yellow, green, and
red traces respectively. Solid and dashed lines represent N = 1 and 2 atom Fock states
in F = 1.
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Figure 6.7: Example plots with N = 6 of (a) atom cloud length σz, (b) thermal atom
cloud PDF scaled to the nominal blockade length RB = 16 µm (normalized at z = 0),
(c) dipole-dipole energy shift probability distributions, and (d) the probability of having
a certain number of ”weakly blockaded” atom pairs (∆dd < 10Ω1 = 10 MHz) in a sample
for temperatures T = {10, 100, 150, 300} µK, corresponding to blue, yellow, green, and
red traces respectively.

there is to be long-range weakly blockaded atom pairs. Figure 6.7 is intended to give

some intuition about the effect of temperature on long-range atom pairs. For T = 10 µK,

the atomic distribution is completely contained within a blockade radius (∆dd(RB) = Ω1)

and there are no weakly blockaded atom pairs with ∆dd(z) < 10Ω1 = 10 MHz. As the

temperature is increased to our typical multi-atom temperatures (∼ 150 µK) the number

of weakly blockaded pairs increases, and the fidelity of a π pulse decreases, while the

probability to observe double excitations is increased.

Figures 6.8, 6.9, and 6.10 are pedagogical single instances of a Monte Carlo showing

the different dynamics of various types of blockade breakdown based on different atom

configurations. In the case of moderate blockade, Figure 6.8, where there is a single pair
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that could be excited (10Ω1 > ∆dd >∼ 5Ω1) there is a tiny amount of leakage into the

doubly excited state. In the case of weak blockade, Figure 6.9, a single pair is near enough

to resonance that could be excited (5Ω1 > ∆dd ' Ω1) there is a non-negligible amount of

doubly excited state amplitude, but the characteristic enhanced Rabi oscillations are still

clearly observable. Finally, in the case of blockade breakdown (Ω1 > ∆dd) Figure 6.10, the

atoms are far enough apart that more than a single pair is non-blockaded and the behavior

devolves into something that no longer resembles the collective behavior expected. The

code to generate these images can be found at the URL in reference [70].

Short-Range Atom-Pairs

At certain interatomic distances the full molecular structure of the Rydberg-Rydberg

interaction reveals resonant molecular states [57, 59]. Most of these molecular crossings

have little to no coupling from the single excited state and are only accessible via higher

order photon interactions. These resonances can be ignored. However, there can be

a significant amount of state mixing due to the Rydberg-Rydberg interaction. Mixing

enables molecular Rabi frequencies that are comparable to the single-atom Rabi frequency

for the singly excited state.

In reference [57], the outermost crossing for 100S + 100S occurs at 6.22 µm and the

molecular Rabi frequency is Ωm = 0.55Ω. It is reasonable to assume that there is a detri-

mental effect of having a relatively weakly coupled molecular state excitation occurring at

this range. Derevianko et al. [57] found that double excitations that are quickly removed

from the cloud can be modeled as an effective decay parameter. The net decay is a sum

of the decay due to each molecular resonance. Their analysis was done for an isotropic

cloud of Rb atoms, but for our 1D geometry, mid-range interactions (Rs < R < RB) do

not have the same scaling as in the isotropic case. So while molecular resonances are not

predicted to be an issue at moderate length scales, the result is a reminder that, at short

interatomic distances, the large number of densely packed molecular resonances with weak
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coupling might add up to a significant decoherence rate. This so-called ”spaghetti”-region

is notorious for difficult calculations and results that are extremely sensitive to external

fields [59].

In the remainder of this section, our method for calculating molecular potential curves

for Rydberg D-states is presented. The states used in this thesis are |r〉 = 97D5/2,mj =

5/2 and 111D5/2,mj = 5/2, but this calculation gives qualitatively similar results, so only

the 97D state will be shown.

Calculating molecular resonance curves involves including nearby molecular states in

a larger range of angular momentum states, but the 1D geometry of our experiment limits

the angular complexity since to a good approximation the atoms are separated along the

z-axis. The Hamiltonian for the applied magnetic field B = Bẑ is diagonal in the z basis

and since the total projection of angular momentum is conserved by the dipole-dipole

interaction to first order B is a near constant energy offset which has little effect on the

dynamics.

The accuracy of the result will depend on the number of relevant molecular states

included in the basis. However, the blind inclusion of any molecular state within a certain

energy range can quickly saturate the computational power of a desktop computer, and

most states will not effect the calculation. To alleviate this, a simple iterative algorithm

for inclusion of a particular molecular state in the computation has been developed. For

an initial energy cut, Ecut, and figure of merit, Fcut = C3/(∆R
3
0), at some distance R0

of interest. The parameter R0 should be chosen as the closest interatomic distance of

interest. The algorithm to build up the basis state list is as follows:

1. Begin with the molecular state of interest denoted |ψa〉 + |ψb〉 = |naLaJamja〉 +

|nbLbJbmb2〉. For us |ψa〉 = |ψb〉.

2. Next produce a list of all |nαLaJamja〉 + |nβLbJbmjb〉 molecular states within the

energy range defined by Ecut and the dissociation energy for |ψa〉+ |ψb〉. Reasonable

bounds should be chosen for ni ∈ [nmin, nmax]. For example n0
1 = n0

2 ∼ 100→ ni ∈
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[n0 − 10, n0 + 10]. These are the 0th order basis states.

3. Calculate a list of all molecular states that are accessible by an ED transition from

the previous order of basis states that are also within Ecut and the bounds on ni.

4. Calculate the C3 coupling coefficient and molecular detuning ∆ between each po-

tential molecular state from the new list and each molecular state from the previous

order’s basis states. If the figure of merit C3/(∆R
3
0) exceeds the Fcut threshold then

the new state should be appended to this order’s basis state list.

5. Repeat step 2 and 3 for each order of ED (or other interaction) transitions desired.

6. Delete any duplicate states.

Once the basis states have been compiled the Hamiltonian can be constructed and diag-

onalized for a given interatomic separation R.

The results of applying this algorithm for the 97D molecular state results in Figure

6.11. In this image the molecular Rabi frequency is denoted in grey scale, so many

resonances that don’t couple are hidden. Molecular resonances can be seen around R = 3.5

and 6 µm. Even though the calculations are inaccurate, at short range many steep weakly

coupled resonances can be seen by the seemingly unconnected dots for R < 4 µm. Since

the total effective decay induced by molecular resonances is the sum of the decay of

individual resonances, a sufficient density of decay channels at close range could add to a

non-negligible decay rate even for 1D.
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Figure 6.11: Molecular Rydberg energy curves due to the dipole-dipole interaction. The
data points are scaled by the amount of 97D5/2,mj = 5/2 + 97D5/2,mj = 5/2 character
they contain, which is denotes the coupling from the single excited state. For this dataset
Ecut = 30 GHz and Fcut = 3. Note the high sensitivity to position for R < 4 µm, this is
known as the ”spaghetti” regime.
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Chapter 7

Atom Number Measurements

This chapter details the different atom detection schemes employed in this thesis and some

relevant technical details. Atom loss mechanisms related to the readout are discussed in

Section 7.1.

In this work, all atom detection is based on atom fluorescence, where photons scat-

tered from probe lasers are collected by a high numerical aperture (NA=0.35) lens and

imaged onto an Electron-Multiplying Charge Coupled Device (EMCCD) camera. The

total signal reported by the camera is proportional to the number of integrated photo-

electrons generated during the exposure time. Both the total number of photo-electrons

generated, and the signal after the camera readout are governed by stochastic processes,

and therefore have some associated intrinsic noise. Camera noise models are discussed in

Section 7.2.

The detection schemes utilized can be categorized into the following regimes based

on the resolvability of the discrete atom number signal histograms: single-atom detection

(Section 7.2.1), few-atom detection (Section 7.2.4), and multi-atom detection (Section

7.2.3). In case of single-atom detection, the loading rate is lowered to nominally 0.3

atoms per measurement such that the rate of having more than 1 atom in a trap site,

P (n > 1) = 1− P (n = 0)− P (n = 1) ∼ 4%, is small. The MOT lasers are used to probe
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the atom while the camera collects photons for a time long enough to resolve the difference

between the single-atom photon scattering rate and the background count rate, but not

too long to cause significant heating or one-body loss. Since the trap sites are separated

by > 10λ the sites are optically resolvable and pixels can be attributed with high fidelity

to a specific trap site. For all data taken, a 3×3 pixel region of interest (ROI) is integrated

with equal spatial weighting to generate a single number for the camera signal for each

site. Two camera shots are employed to post-select on measurements containing one-atom

during the initial camera shot. Measurements that contain an atom can be post-selected

with high-fidelity using a threshold measurement on the first camera shot.

For ensemble measurements the loading rate is increased, usually in the regime where

the probability of loading zero atoms is negligible, P (n = 0) = e−λ. With no losses we

would be able to perform high fidelity atom number measurements every camera shot.

However, due to the relatively high peak densities in the FORT, ρ0 = N
∏

i

(√
2πσxi

)−1
=

5N × 1010 atoms/cm3, and our FORT depth of 1.5 mK, inelastic collisions can cause

significant atom losses. Loss processes during the readout cause the scattering rate to

decrease over the integration time, which in turn smears out what would be resolvable

peaks in the camera histograms. This broadening forces us in most situations to revert

to a probabilistic approach to measuring the atom number. What’s more, if the losses

are not accounted for the atom number can be severely underestimated. However, a good

understanding of the readout process and available experimental parameters can help

mitigate some of this sub-optimal behavior.

Finally, a discussion of the state-selective readout method used to determine the

ground hyperfine-manifold of the atoms can be found in Section 7.3.
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7.1 Loss Mechanisms

The population in the conservative potential created by the FORT laser will decrease over

time from its initial value of n0 according to the general rate equation:

dn

dt
= −αn− n(n− 1)β, (7.1)

where α and β are the single- and two-body loss rates. Both α and β will be time-

dependent during the experiment due to changes in how the atoms are addressed during

the protocol. The generic solution to Equation 7.1 is given by:

n(t) = n0
(α− β)

(α + (n0 − 1)β) e(α−β)t − n0β
. (7.2)

For β = 0 this simplifies to normal exponential decay. For α = 0 the result is:

n(t) = n0
eβt

1 + n0(eβt − 1)
. (7.3)

In this chapter, we are concerned with undesirable losses that occur during or between

the readouts, so that is where attention will be focused. Specific loss mechanisms are

discussed below.

7.1.1 Single-Body Losses

The single-atom trap lifetime, τ , is on the order of seconds, while the time between suc-

cessive measurements is ∆t = 115 ms. The lifetime is limited by collisions with room tem-

perature background atoms.1 The trap loss thus limits the retention to exp (−0.115s/τ).

In the case of multiple atoms, since only one readout is performed, the effective ∆t = 15

ms is the time difference between the experiment and the readout.

1Even though this is a collisional two-body loss, it is between an atom in the ensemble and an atom
external to the ensemble, so it occurs at a rate proportional to N × P , where N is the number of atoms
in the ensemble and P is the pressure of the vacuum chamber, and not N2.



106

Atoms can also be ejected due to heating during interrogation. The readout procedure

has a smaller probe detuning (∆readout ∼ 2.5− 3Γ) than the cooling procedure (∆cooling ∼

15Γ), which introduces enough heating to eject atoms. If the loss due to heating is small,

then the loss is most likely to occur at the end of the readout procedure, thus there

should be enough scattered photons to pass the single-atom cuts, but no atom will be

detected during the second readout. The retention due to this effect can be optimized by

balancing the probe beam powers and magnetic fields. When the heating is well optimized

the total retention can be as high as 95%, most likely limited by background collisions,

which imply a background limited lifetime of τ = 2.2 s. Previous measurements of the

trap lifetime put τ at 3.5 s[45]. A lifetime of τ = 2.2− 3.5 implies a background pressure

of < 10−8 torr[71]. Reducing the time between exposures would increase the maximum

retention linearly. Based on some preliminary testing a reduction by at least a factor of

5 is possible. However, a technical issue in the current implementation of the experiment

controller prevents us from doing this, which we hope to resolve when upgrading the

controller software soon.

7.1.2 Two-Body Losses

The rate of collisions between atom pairs is proportional to the number of possible atom

pairs in the sample, which is given by: n(n − 1)/2. If the energy released during an

inelastic collision is much greater than twice the trap depth, then both atoms will be

ejected. There are a few processes for such binary inelastic collisions:

1. ground-ground hyperfine changing collisions (HCC),

2. excited-ground light-assisted collisions.

3. and excited-excited collisions.

The HCC and light-assisted collisional processes are discussed in detail in the subsequent

sections. The effect of any doubly excited collisions should be small since during a normal
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cooling or readout procedure the excited state probability is small, ce ∼ 0.1, and this loss

channel shouldn’t be detectable in our apparatus.

Two body trap loss during a readout is typically measured to be β ∼ 0.02 atoms−1·ms−1.

For our peak trap densities this translates to loss rate in terms of density of ∼ 4× 10−10

cm3/s.

Ground-Ground Collisions

A ground state hyperfine-changing collision (HCC) is represented in our qubit notation

as:

|0〉+ |x〉 → |1〉+ |x〉+ hνHF ,

or:

|0〉+ |0〉 → |1〉+ |1〉+ 2hνHF ,

where one or both of the atoms changes from the upper (F = 2) to the lower (F = 1)

hyperfine manifold during the collision and hνHF = 330 mK of internal energy is released

as kinetic energy per nuclear spin flip, more than enough energy to eject both atoms from

the 1.5 mK FORT. At peak densities of 1011 − 1012 atoms/cm3 these collisions occur at

a negligible rate on the order of 1 s−1[72, 73]. A more precise study of the HCC rate in

our FORT and the state dependence is warranted to estimate the effect on the W-state

fidelity.

Light-Assisted Collisions

Light-assisted collisions are caused by excitation to the attractive molecular potential of

the S1/2 and P3/2 states and the finite lifetime of the excited state. If the light addressing

the atoms is red-detuned, then the molecular excitation from S + S → S + P is resonant

at some inter-atomic distance R, see Figure 7.1. The potential is attractive and therefore

R will decrease over time, assuming 0 atom temperature The excited atom will eventually
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decay back to the ground state by scattering a photon, but from a lower point on the

molecular energy curve. The energy gained during this process is then equal to h∆ν, and

is manifested in the kinetic energy of the atom pair. This extra kinetic energy is usually

enough to easily eject both atoms. Since any light assisted collision can cause loss, the

further red detuned from the free-space resonance the addressing light is, the smaller the

effective collisional volume will be. Alternatively, blue detuning the light could also be

effective. This is less interesting for cooling procedures, but has been shown to be effective

for single-atom loading[12].

Figure 7.1: Collisional trap loss channels for Na atoms in a MOT. The light-assisted
collisional path is 1 → 2 → 3a. The path through 3b is a fine-structure changing light-
assisted collision and would manifest in a similar manner. Reprinted from reference [74].

7.2 Camera Signal Models

The signal observed during a camera exposure is proportional to the number of photons

incident on the photo-detector. The atom cloud is a Gaussian distribution with width

σr ∼ 0.7µm and length σz ∼ 7µm. The fluorescence from the atom clouds is collected by

the NA = 0.35 custom triplet, passes through a polarizing beamsplitter, capturing 50%

of the light, and travels through spatial and spectral filtering to be imaged on the plane
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of an EMCCD camera. Due to the geometry of the apparatus, the camera integrates the

fluorescence along the axial dimension of the trap (ẑ), and the trap sites appear as a row

of circular spots on the camera.

A ROI is defined for each site by a 3x3 pixel square around the fluorescence image of

each trap site. The camera signal for a site is defined as the sum of the pixel values in

the ROI minus the background per pixel from two groups of camera pixels outside the

ROI. This procedure is designed to return a near zero signal when no atom is present in

the trap.

The readout procedure toggles the FORT and MOT lasers via AOMs out of phase at

1.25 MHz with a 50% duty cycle. Chopping is necessary because of the large AC Stark

shift gradient imposed by the FORT, and the heating due to the population in the anti-

trapped 5P3/2 state. The chopping is at a much higher frequency than the trap radial

and axial oscillation frequencies, which has been measured by parametric heating to be

ωr(z) = 40(3.2) kHz. Therefore, the energy transfer to the atoms due to the chopping

should be inefficient, so minimal heating will occur during the readout due to parametric

heating.[75] Loss during the readout is due to slightly unbalanced light pressures and

magnetic fields. Typically the losses during readout can be minimized by appropriately

shimming the power balance and magnetic fields during the readout phase. To increase

sensitivity to the parameters, the readout phase can be temporarily extended beyond the

end of the actual first camera exposure.

The camera signal is fundamentally Poissonian in nature, since there is some effective

scattering rate from the background of the 9 pixels in the ROI Γ0 ∼ 8kHz, combined with

the rate of collected fluorescence from the atom cloud Γsig = nΓ1, where Γ1 ∼ 10kHz

is the time-averaged single-atom photon collection rate. The camera signal probability

density, S(s), in the ideal case is then given by:

S(s) =
∞∑
n=0

PN̄(n)P(Γ0+nΓ1)t(s), (7.4)



110

where N̄ is the mean atom number, t is the camera exposure time, and Pµ(k) is the Poisson

distribution for mean µ with discrete variable k. An example probability density is shown

in Figure 7.2, where P(Γ0+nΓ1)t(s) has been replaced by the continuous approximation

(Γnt)
s exp [−Γnt] /Γ (s+ 1), where Γn ≡ Γ0 + nΓ1 and Γ is the gamma function.
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Figure 7.2: The ideal camera signal distribution for N̄ = 2 atoms with Γ0 = 8 kHz,
Γ1 = 10 kHz, and t = 20 ms, with no loss. The peaks correspond to incrementally larger
numbers of atoms, and are color-coded for clarity. Because the peaks are well separated,
the distribution of atom numbers could be extracted with high fidelity.

7.2.1 Single Atom Camera Signal Model

Due to the high loss rates for n ≥ 2, the single-atom camera signal model is only ap-

plicable for site loading rates where the probability of getting two atoms is negligible.

For additional discussion of the single-atom readout, the interested reader should refer to

previous group theses [25, 44, 45].

A typical single-atom readout camera signal histogram is shown in Figure 7.3(a) along

with a fit to the single-atom readout model:

S(s) =
2∑

n=0

PN̄(n)GnΓ1t(s), (7.5)
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shown in red. Here Gs0(s) is a normalized Gaussian distribution, centered at s0. For

reference, the result of a purely Possionian version of Equation 7.5 with the same param-

eters N̄ from the Gaussian fit function is also shown. The super-Possionian behavior in

the single-atom peak is most likely due to shot to shot fluctuations in the probe light’s

interference pattern on the atom cloud. The shot-to-shot fluctuations due to the interfer-

ence patterns can be mitigated by modulating the retro-reflecting mirror position with a

piezo element at a few kHz, or alternatively using independent counter-propagating probe

beams with a differential frequency shift of a few kHz. Using independent beams adds

complexity and doubles the power requirement but adds the ability to fully balance the

light pressures. The 2-atom peak for the data set shown lacks significant statistics to

determine the distribution, which is typical.
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Figure 7.3: (a) An example daily 500 shot single-atom readout from 06/13/2013, with a
t=20 ms camera exposure time. A fit based on Equation 7.5 is shown in red with best fit
parameters: N̄ = 0.36± 0.01 atoms, Γ1 = 8.6± 0.1 kHz, σ0 = 12.3± 0.2, σ1 = 27± 2, and
σ2 = 200 ± 200. PN̄(2) = 4.4 ± 0.2% The Possionian model from Equation 7.4 is shown
as the black dashed line using the same parameters, demonstrating the super-Possionian
nature for n > 0 photon count distributions. The typical ±3σ1 cut thresholds are overlaid
in red and blue for the zero- and one-atom cuts respectively. (b) The atom number
likelihoods Equation 7.6 are shown from the fit parameters in (a). The 0-, 1-, and 2-atom
curves are shown in blue, orange, and green respectively. For reference the thresholds are
also shown. Note that the large σ2 causes the 2-atom likelihood to dominate for regions
where the PDF is small.

The most probable atom number given a camera shot signal magnitude, s, can be

determined based on the prior knowledge from the measurement of the camera signal
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model parameters. This is done by comparing the ratios of the various atom number

camera signal distributions to the probability density reported by the model at s. For

Equation 7.5 the likelihood of having interrogated n atoms when s photons are received

by the camera is stated as:

L(n|s) ≡ P (n)Sn(s)/S(s) = PN̄(n)GnΓ1t(s)/S(s), (7.6)

here S(s) is the single-atom camera signal model determined from the daily readout test.

The likelihood plots are shown in Figure 7.3(b).

For single-atom experiments the likelihood analysis is unnecessary and it is preferable,

for the sake of sanity, to employ a threshold cut procedure. The typical threshold cuts

used in single-atom experiments are ”3σ1” cuts, where a ”one-atom” event is defined as

a camera signal in the range: [Γ1t − 3σ1,Γ1t + 3σ1], and a ”zero-atom” event is defined

as the camera signal range [−50,Γ1t − 3σ1 − 1]. Everything outside of these two ranges

is considered to be an anomaly and is dropped for shot 0 and counted as a zero-atom

signal for shot 1. The 3σ1 threshold cut fidelities for the data set shown in Figure 7.3 are

ζ(0, T0) = 99.4% and ζ(1, T1) = 96.2% for the zero- and one-atom cuts respectively. In

other words, 96.2% of the one-atom cut events are valid and ζ(2, T1) = 3.7% of the events

are actually mislabeled 2-atoms events. Of course, a valid 2-atom distribution is required

for an accurate error representation and fidelities can only be calculated a posteriori from

a known distribution. These fidelities ζ are calculated via the following relation:

ζ(n, Tn′) ≡
∫
Tn′

PN̄(n)GnΓ1t(s)ds
/∫

Tn′

S(s)ds, (7.7)

where n is the atom number and Tn′ is the threshold domain for atom number n′.
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7.2.2 Two-Body Loss Rate Calibration

In order to calibrate the two-body loss rate, we measure the fluorescence of the sample

as a function of the camera exposure time. For short times, t we expect the number of

photons collected to be equal to be nΓ1t, where n is the number of atoms and Γ1 is the

single-atom photon collection rate. As the camera exposure time is increased the rate of

collected photons will decrease as the number of atoms in the sample decreases due to

losses. The probability pn of finding atom number n is given by the set of simultaneous

differential equations:

dpn(t)

dt
= −β

2
[(n+ 2)(n+ 1)pn+2 − n(n− 1)pn] , (7.8)

where β is the two-body loss rate.

Discrete Model

If a finite maximum n = nf is imposed, the system of equations given by Equation 7.8 can

be solved analytically for an arbitrary initial atom distribution. A Mathematica package

that contains the solution with nf = 50 atoms along with definitions for the equations

corresponding to this discrete model can be found at this URL: [76]. While this solution

is complex, it is most useful in situations that require long exposure times where there is

a distinct possibility of reducing the atom distribution to only 0 and 1 atoms.

Using the analytical solution we can develop a model for the camera signal as a function

of integration time. The rate of collected photons is equal to R(t) = N̄(t)Γ where N̄(t) =∑nf
n=1 pn(t)n is the mean atom number at time t. Therefore the mean integrated camera

signal is:

s̄N̄(t) =

∫ t

0

dt′R(t) = Γ

nf∑
n=1

[
n

∫ t

0

dt′pn(t)

]
, (7.9)

which can also be solved analytically. An example simulation data set is shown along

with the solution to Eq. 7.9.
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An interesting aside that can be easily modeled with Eq. 7.8 is the time evolution,

due to pure two-body loss, of the Q-parameter defined by:

Q =
∆N

N̄
− 1, (7.10)

where ∆N is the distribution variance. A Q < 0 indicates sub-Poissonian behavior, and

Q = −1 is deterministic preparation in a Fock State, i.e. the variance is zero. The result

is shown in Figure 7.4.

Figure 7.4: (a) The Mandel Q-parameter evolving during a simulated two-body loss
experiment. The Q-parameter is limited to Q=-0.5 from two-body loss mechanisms. (b)
F = 1 (green) and F = 2 (red) Fock State creation probabilities as a function of time
undergoing two-body loss for N̄(0)� 1.

Continuous Model

If the accumulation in states p0 and p1 during the readout is small then we can use the

more familiar simplified continuous model:

dN̄

dt
= −βN̄(N̄ − 1). (7.11)

Notice that for N̄(0) > 1, N̄ will approach a mean of 1. This is not the correct behavior

as it should approach 50%, and why it is not accurate if p0 and p1 are not negligible.
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Integration of Equation 7.11 results in the continuous version of Equation 7.9, given

by:

s̄(N̄ , t) =
Γ

β
ln
[
1 +

(
eβt − 1

)
N̄
]
. (7.12)

Figure 7.5 shows a comparison of the continuous and discrete models. Note that for longer

exposures the camera signal is overestimated in the continuous model as expected due

to the asymptotic behavior of the continuous model. As can be seen for the short time

scales used in the multi-atom number measurements (tex = 3 ms), the camera signal is

approximately linearly sensitive to the atom number, and is sensitive at a higher order

to the two-body-loss rate. Therefore, as will be shown in the multi-atom number mea-

surement section, Section 7.2.3, the atom number measurement is insensitive to the small

errors from using the continuous model, and we use the continuous model to determine

the two-body loss rate because it is vastly simpler to implement.

Figure 7.5: (a) A comparison of the simulated integrated camera signals resulting from
the discrete (solid) and continuous (dashed) atom population models for a typical two-
body loss rate β = 0.02 atom−1 ms −1. (b) The systematic error due to the use of the
continuous model s̄discrete(tex) − s̄cont(tex), note that the error is linear after sometime.
This is due to the build up of population in p0 and p1 that is incorrectly counted in the
continuous model.

For a simple improvement to the continuous model the rate equation can be modified

by adjusting the parameter nasy to make the discrete and continuous curves agree well
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with little additional complication.

dn

dt
= −n(n− nasy)β. (7.13)

A value of nasy = 0.25 reproduces the discrete result well for this parameter range.

7.2.3 Many-Atom Number Measurements

Once β is known we can use it to calibrate the camera signal observed during a static

integration time. In the limit of β → 0, the number of photons collected during an inte-

gration time t is fundamentally Poissonian with a mean of s̄ = nΓt. Our atom detection

scheme works best when N̄Γt ∼ 100 − 200 photons, which allows us to approximate the

photon counts, s, as Gaussian:

Gn(s, s̄, σ) =
1√

2πσn
exp

[
−1

2

(
s− s̄
σ

)2
]
, (7.14)

with standard deviation σ. If no σ is specified, it is assumed that σ =
√
s̄. Typically Γ1

is between 8-10 photons/ms, with a background rate of Γ0 = 8 photons/ms, derived from

the width of the background camera signal distribution assuming Poissonian statistics.

Since we automatically subtract the background from the signal, we measure the value of

σ1 during our readout procedure and use σn ≡
√
nσ1. We approximate the background

(0 atom) peak as a Gaussian distribution with measured width σ0.

For finite β, as the readout progresses pair-loss events occur which will create a ”tail”

on the unperturbed Gaussian distribution. If the exposure time is short then the Gaussian

distribution with a tail can be approximated as a Gaussian centered at the expected mean

s̄ = s̄(n, t), and the camera signal distribution is then given by:

S̄(s) =

nf∑
n=0

PN̄(n)Gn [s, s̄(n, t)] , (7.15)



117

where σ0 is the background standard deviation. Note that the mean atom number N̄ is the

only free parameter in S̄(s). We typically use an exposure time t = 3 ms, and the analysis

is performed with experimentally measured parameters σ0 = 0.188 and σ1 = 0.448 atoms.

An example data set and fit are shown in Figure 7.6.

Figure 7.6: (a) The camera signal histogram for N̄ = 7.6 atoms, normalized to the single
atom signal Γ1t. The fit to Equation 7.15 where N̄ is the only free parameter, is the solid
red line. The expected camera signal assuming no losses, β = 0 is the dashed black line,
for the same N̄ . (b) The likelihood plots for the many atom measurement from Equation
7.6 using the same parameters. The indistinguishably of the individual histograms causes
low maximum likelihoods. The distortion at s < 0 is due to the simplification of Gaussian
instead of Possionian distributions. However, note that s < 0 and s > 15Γ1t are low
probability events.

Since the procedure only integrates the camera signal for a short time, we are not very

sensitive to the two-body loss rate by design. For the data set shown in Figure 7.6, a 50%

change in β only changes the atom number result by 8.5%.

7.2.4 Few-Atom Distribution Measurement

Due to the short exposure time required to stay in the near linear signal regime, the

individual atom peaks are not well resolved and therefore are not reliable for measuring

the atom probability distribution. For small N̄ the actual atom probabilities can be

measured by using a longer integration time than described in Section 7.2.3, allowing

the peaks to separate enough for a reasonable fidelity measurement even with two-body

losses.
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For n < 2, no collisions occur and therefore the signal distribution is simply Gaussian:

Sn(s, t) = Gn (s, nΓt). For n = 2 or 3 a maximum of one mutually destructive collision

event can occur, and therefore the signal distributions can be split into 2 cases:

1. S
(0)
n (s, t), no loss event occurs during the integration time: p(tloss > t) = e−n(n−1)βt,

2. S
(1)
n (s, t), a loss event occurs at time tloss with probability: p(tloss)dt

′ = n(n −

1)βe−n(n−1)βt′dt′.

For case 1. the signal is, once again, S
(0)
n = Gn(s, nΓt). For case 2. the atoms will scatter

photons until the loss event at tloss, at which point photon collection from atoms will

cease (n = 2), or continue at the single-atom rate (n = 3). This creates a tail for the

Gaussian distribution, discussed in Section 7.2.3, with formula:

S(1)
n = G?

n(s, t)

=

(
n(n− 1)β

1− e−n(n−1)βt

)∫ t

0

dt′e−n(n−1)βt′Gn

[
s,
(
(n− 2)t+ 2t′

)
Γ,
√
σ2

2t
′/t+ σ2

(n−2)

]
.

(7.16)

To the best of my knowledge, this integral can not be calculated analytically. However,

for the case of σ(n−2) = 0 the integral can be calculated analytically. The result for n = 2

is shown below:

S
(1)
2 ∼ G?2 ≡

2β

4(1− e−2βt)

√
t

Γ2t+ βσ2
2

exp
[
2sΓt/σ2

2

]
(A+ + A−) , (7.17)

where the terms A± are defined as:

A± ≡ exp

[
±2|s|

√
t(Γ2t+ βσ2

2)/σ2
2

](
erf

[
2
√
t(Γ2t+ βσ2

2)± |s|√
2σ2

]
∓ 1

)
. (7.18)

The analytic result above can be convolved to produce the loss event signal from a two

or three atom sample, S
(1)
n (s, t) =

∫∞
−∞ ds

′G?2(s′, t)G(n−2)(s− s′, t), but this too cannot be
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calculated analytically. Since the effect of the finite σ0 width is only applicable for a small

number of events where s ∼ 0, it is ignored to reduce the complexity of the analysis. A

Monte-Carlo simulation of an exactly two-atom signal with β = 0.02 atoms−1· ms−1 is

shown in Figure 7.7 along with S2(s, t) using G?
2(s, t) (solid black) and the approximation

G?2(s, t) (dashed red) using the same parameters (not a fit).

Figure 7.7: A Monte Carlo simulation of a two-atom signal is shown in blue along with
the two-atom camera signal model S2(s, t) in solid black for the same parameters (not a

fit). The camera signal model approximation S2(s, t) ∼ e−2βtS
(0)
2 (s, t) + (1− e−2βt)G?2(s, t)

used in the analysis is shown as a dashed red line. Note that convolution with the
background signal is only significant around s/Γ ∼ 0. The parameters for the simulation
are: {β,Γ, t, σ0, σ2} = {0.02 atoms−1 ·ms−1, 1 ms−1, 20 ms, 0.075 ms−1/2, 0.2 ms−1/2}.

The signal distribution for n ≤ 3 is then given by:

S(s, t) =p0G0(s, 0) + p1G1(s,Γt)+

p2

[
e−2βtG2(s, 2Γt) + (1− e−2βt)G?

2(s, t)
]

+

p3

[
e−6βtG3(s, 3Γt) + (1− e−6βt)G?

3(s, t)
]
.

(7.19)

For n > 3 one would have to include n/2 loss events, and one might be able to do

this efficiently in a recursive manner, but for our experimental parameters n = 2 is our

maximum detectable atom number.

We have decided to use an exposure time of t = 10 ms to minimize the overlap integral
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Figure 7.8: (a) A Monte Carlo simulation (same as Figure 7.7) of a two-atom signal is
shown in blue along with the two-atom camera signal model S2(s) in red for the same

parameters (not a fit). The solid blue line is S
(1)
2 (s), the component where no loss event

has occurred. The solid yellow line is S
(2)
2 (s) the component where a loss event has

happened during the camera exposure. (b) A single-atom readout camera signal data
set with minimal two-atom preparation. (c) A high statistics data set with significant
two-atom preparation shown with a fit to Equation 7.19 (n < 3). The individual atom
signal components are shown for comparison. Note that the gap between the background
and 1 atom peaks is not preserved due to the ”tail” of the 2 atom distribution from the
two body loss.
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between the 1 and 2 atom distributions. Typical experimentally measured (normalized to

the single atom scattering rate) parameters used for n = 2 measurements are σ0 = 0.236

and σ1 = 0.883 counts/
√

ms for Γ = 1 count/ms.

This improved model for two-atom camera signal distribution also enables improve-

ments to the accuracy of the single atom readout fidelity where two-atom loading events

occur at a small non-negligible percentage. A Poissonian loading rate of µ = 0.3 atoms

(P0.3(2) = 0.033) is shown in Figure 7.9 for similar parameters. With these assumptions

the threshold measurement fidelities are ζ(0, T0) = 99.3% and ζ(1, T1) = 95%, where now

ζ(2, T1) = 5%.

Figure 7.9: (a) The improved camera signal histogram model, Equation 7.19, in the
context of a single atom readout. The initial atom distribution is Poissonian with mean
µ = 0.3 atoms, Pµ(n > 2) forced to 0 and all probabilities are re-normalized. The y-axis
is expanded to show the two-atom peak at the expense of the 0-atom peak visibility.
Threshold regions are shown in red (0-atom) and blue (1-atom). (b) The likelihood
functions for 0- (blue), 1- (orange), and 2-atoms (green) for the same distribution. The
two-atom fidelity with two-atoms remaining after the readout is shown as the black dashed
line.

7.3 State-Selective Measurements

Measurement of the atomic population in a state is an essential component of any atom-

based quantum computation system. State-selective measurements are implemented in

this experiment by removing atoms in the |0〉 state, with an unbalanced laser nearly
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resonant with the D2 5S1/2, F = 2 ↔ 5P3/2, F
′ = 3 transition. The hyperfine splitting

between F = 1 and F = 2 is sufficient to negate any off-resonant excitation from F = 1.

Therefore, we ideally perform an operation that maps the |1〉 population to the trap

population, which can be measured with any of the procedures outlined earlier in this

chapter.

To the extent that the transition is closed an atom will continue to cycle between

F = 2 ↔ F ′ = 3 absorbing momentum from photons propagating in a single direction,

until it has gained too much energy to be contained in the trap. However, it is possible

to excite the F ′ = 2 or F ′ = 1 and subsequently decay to the F = 1 state, at which point

heating will cease and an erroneous |1〉 signal will be recorded. To mitigate this decay

channel we implement a few modifications to the fundamental procedure.

1. chopping the FORT and blow-away light out of phase,

2. circularly polarized blow-away light collinear with a magnetic field,

3. instantaneously lower the trap depth to ∼ 10% during blow-away

Chopping the FORT and blow-away light out of phase allows the atoms to only be ad-

dressed in free space. This allows for the atoms to always be addressed on resonance

minimizing coupling to F ′ 6= 3. Using circularly polarized light adds an additional polar-

ization selection rule to the excitation once the ensemble is optically pumped into F = 2,

mF = 2, the magnetic field is necessary to define the quantization axis. Under conditions

of perfect σ+ polarized light, the only available excitation channel is F ′ = 3, mF = 3. Fi-

nally, lowering the trap depth instantaneously for 2 ms has little effect on non-addressed

atoms since they stay cold enough to be retained when the FORT is increased to full

power. However, atoms that are affected by the blow-away light see a shallower and

wider potential allowing the spatial extent of the atoms in |0〉 to expand more than in

a deeper potential as they are heated. Then when the trap is turned back on |0〉 atoms

not fully removed from the low-power FORT will gain additional kinetic energy due to
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being located on a steeper slope of the potential energy curve. With these modifications,

blow-away infidelities, defined as the probability to miscategorize atoms in |0〉 as |1〉, as

low as 0.2 %/atom have been observed, see Figure 7.10.
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Figure 7.10: (a) The data points (blue dots) are collected for different blow-away pulse
time scan starting with N̄ ∼ 4 atoms in site 2. A single-atom readout sequence is used
since the expected two-event leakage signal ρ2 will occur at a negligible rate. Rates are
extracted from the number single-atom counts, n1, and the expected number of atoms
loaded during the test, ρ1 = n1/(N̄ ∗m), where the Poisson mean, N̄ has been measure in
a separate experiment and m is the number of data runs taken. The exponential fit, shown
as the black line, gives a time constant τ = 8(4) µs and an asymptote of 0.1(1)%/atom
leakage. Data taken 06/13/2014. The blow-away leakage sensitivity to the (b) double
pass AOM frequency and (c) relative BA power. Data is averaged over sites 1,2 and 3
with 3-6 atoms per site. Data taken 06/15/2014.

These rates are low enough that the signal to noise ratio is 1:1 for a sample of 1000

atoms, opening the possibility for observation of single photon absorption with signifi-

cant atom-photon cross sections[77]. For the data shown in Figure 7.10, the |1〉 state

retention during the blow-away pulse was measured to be 99(3)% (corrected for the nor-

mal daily retention). Of considerable interest is the implementation of a non-destructive

state-selective readout (ND-SSRO) procedure. This has been achieved recently using an

EMCCD camera and a single probe beam[78, 79], and two counter-propagating beams

to minimize heating[79]. ND-SSRO in neutral atoms has been previously demonstrated

using a well polarized beam and a single photon avalanche photodiode (SPAD).[80].
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Chapter 8

Apparatus

This chapter is devoted to documenting a large overhaul of the experimental system,

however no data will be shown from the apparatus outside of the section itself unless

explicitly noted. The combination of the long-term stability of the original apparatus and

the maximum achievable repetition rate of the experiment was becoming a limiting factor

in the complexity of experiments that could be performed. The goals of the rebuild were

to compactify the entire system to lessen the impact of any temperature gradients over

the extent of the system, increase the loading rate while also increasing the background

limited lifetime, decrease the experimental cycle time, automate significant portions of the

daily optimization experiments, and improve the photon collection optics to lessen the

effects of two-body loss in our multi-atom readout procedure. The changes documented

in this chapter were made with these goals in mind, but a summary of these points are

presented in the table below:

Parameter old new

Approximate bounding vol. 0.95 m3 0.4 m3

Cycle time 600 ms 125 ms

Exposure time 20 ms 2 ms

Retention 0.93 0.98
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Figure 8.1: Image of the new apparatus in the orange acrylic enclosure for the old
apparatus FORT, camera, and 780 addressing optics. On the left is the new FORT,
camera, and 780 addressing optics on a 303 stainless steel breadboard, and on the right
is the 480 addressing optics and the alignment camera, on a cast Al breadboard. A
slight bend was noticed in the stainless steel breadboard, so we went with aluminum for
the second one. The 2D- and 3D-MOT optics are all referenced to the black ”lofted-
breadboard” black in the center, while all of the FORT and addressing optics are directly
on the optical table. Each piece is modular and can be moved relative to the other two
(including the MOT) while maintaining subsystem alignment.

An image of the new apparatus is shown in Figure 8.1.

8.0.1 Vacuum System

The vacuum system has been changed to a two-stage vacuum chamber separated by a

differential pumping tube that imposes a pressure difference, creating high pressure and

low pressure regions. Since any atom in a 10 mK trap subjected to a elastic collision

with a 300 K atom or molecule will be ejected from the trap, the limiting factor for atom

retention is typically collisions with the background gas. Therefore a lower pressure is
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required for extended trapping lifetimes to achieve high fidelity operations. However, the

MOT loading rate is proportional to the density of cold atoms ( v / 30 m/s [81]) that pass

through the capture volume. For Rb87 at 300 K, the fraction of atoms with v < 30 m/s is

< 0.2%, therefore trapping from the background is inefficient, and increasing the loading

rate comes at a cost of decreasing the lifetime in the traps, increasing retention errors.

However, an increased loading rate shortens the atom collection phase of the experiment,

which is the dominant phase in the past accounting for about 70% of the cycle time.

Shortening the loading phase can dramatically increase the data rate, allowing better

statistics and more complicated experiments. With the single chamber system it was

necessary to find an appropriate balance between data rate and retention losses.

With a two-stage vacuum system, the loading rate and background gas collision rates

are no longer strongly coupled and the two parameters can be independently optimized.

The 2D-MOT cools atoms in 2 dimensions from a relatively high pressure background

region (∼ 10−7 torr) with large cooling beams (ω = 5 mm), the atoms still have a thermal

velocity in the transverse direction, and travel approximately along a line perpendicular to

the plane of the cooling beams. This atomic beam is positioned inline with the 3D-MOT

and a differential pumping tube (DPT) allowing the atom beam to pass between vacuum

chambers. An image of the assembled vacuum system is show in Figure 8.2.

Differential Pumping Tube

The DPT is a 2.3 mm diameter hole drilled along the axis of a #8-32x1/4” 316 Stainless

Steel socket cap screw. For a ballistic gas in the molecular flow regime the conductance

of a tube is given by[82]:

C =
( v̄π

12

) d3
t

lt
, (8.1)
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Figure 8.2: Image of the double vacuum system. The 2D-MOT chamber with dispenser
is on top. The 3D-MOT science region is below in a ColdQuanta hexagonal vacuum cell.
The dispenser electrical connection can be seen on the right and the ion pump is in the
back left.

where v̄ is the mean velocity, dt is the diameter of the tube, and lt is the length. For a

circular orifice of diameter do instead, the conductance is given by:

C =
( v̄π

16

)
d2
o. (8.2)

For a constant conductance lt = 4d3
t/3d

2
o, meaning that an orifice can be traded for a

tube of some length to gain an increased cross section without increasing the thermal

atom flux. However, for a directional (non-thermal) atom beam, an increased diameter

means an easier target to hit, while additional length is of no consequence. Therefore,

the optimal choice is a long differential pumping tube with a diameter selected to provide

the desired conductance, maximizing the conductance contrast for the thermal and non-

thermal samples, see Figure 8.3. Since alkali atoms do not behave ballistically, there is a

further improvement of the contrast by the fact that atoms striking a vacuum wall will

adhere to the surface, reducing the conductance for thermal Rb atoms. For room temper-
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Figure 8.3: Cartoon showing the conductance contrast of thermal atoms and the 2D-
MOT cold atom source, (a) with a pinhole and (b) with a differential pumping tube.
A larger diameter tube can be made with the same thermal atom conductance, than a
similar conductance pinhole. This leads to an easier to align system due to the larger
target for the 2D-MOT and most likely higher cold atom flux into the science region.

ature air at T = 20 C, the conductance of the differential pumping screw is estimated to

be 0.15 L/s, which includes the socket cap of the screw in the calculation. The ion pump

is specified at 3 L/s so the pressure differential is approximately a factor of 20, for N2,

and likely more for Rb.

Dispensers

The background vapor is created in a Triad Technologies Pyrex cell by heating a stainless

steel 25 mg Rb87 dispenser with a custom bend configuration (Alvatec product number

AS-2-Rb87(98%)-25-X purchased through Trace Sciences).1 Two dispensers are installed

1As of 2017, Alvatec has gone out of business and another source for isotopically enriched dispensers
has not been found. However we note that a two-chamber vacuum system with a 2DMOT acts as an
isotope selector element, and we would not need to worry about additional Rb85 background pressure in
the 2DMOT region.
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for redundancy as 25 mg (∼ 1023 atoms) of Rb should last the lifetime of the experiment.

Heating is accomplished by running 1.5-3 A through the dispenser, which causes the

Bi2Rb3 alloy to sublimate Rb, leaving the Bi behind. The alloy raises the sublimation

point to conditions that exceed a typical UHV bake-out procedure, meaning that the Rb

will stay in a solid phase until it is released via the resistive heating procedure. After the

initial testing, we rarely need to heat the dispensers to load enough atoms.

The dispensers need to be heated resistively and therefore electrical vacuum feedthroughs

are required. In order to keep the size of the system as small as possible only a single

1.33” CF spherical cube element is used. The ion pump (Gamma Vacuum 3S-CV-1D-

5K-N-N 3 L/s) must be attached to the lower pressure chamber. Because of this and the

fact that the DPT is built into the gasket connecting the 2DMOT cell to the spherical

cube, the electrical connections must enter from the lower pressure side and pass through

an intra-vacuum feedthrough (IVFT) to the higher pressure atom source chamber. The

feedthrough wires are then electrically and mechanically mated to the dispenser leads

with custom barrel connectors. The electrical connections cannot short to the vacuum

chamber and must not block the atom beam axis. This required the construction of cus-

tom BeCu barrel to dispenser lead connectors, shown in Figure 8.5. The feedthroughs and

DPT pass through a custom machined blank OFHC 1.33” copper gasket to separate the

chambers. Finally, the uninsulated wires are held away from the copper gasket using a

custom ceramic spacer and ceramic beads, and the assembly is secured by the DPT screw.

The gasket is held in place by the CF flange, and no adhesive is used in the assembly.

The ceramic spacer turned pink during a high-temperature pre-bake. The color changing

process is not known, but besides a cheerier color palette there does not appear to be any

vacuum pressure consequences.
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Figure 8.4: Image of the Intra-Vacuum Feedthrough (IVFT) being assembled with the
dispensers.

Figure 8.5: Exploded view of the IVFT assembly. A screw with a differential pumping
tube holds an insulating ceramic wire spacer, where the wires to the Rb dispensers pass
through. A custom BeCu wire-to-dispenser barrel-connector mates the electrical wires to
the dispensers. Ceramic beads along the wire act as insulators on the bare wire.



131

Hexagonal Vacuum Cell

The science (low pressure) region is a hexagonal cell made from optically contacted 7.3

mm Pyrex windows AR coated on both sides from ColdQuanta. The birefringence of the

top 7.3 mm window was not detectable with two Glan-Taylor polarizers.

An initial high temperature baking procedure was performed on the non-glass vacuum

components then the vacuum chamber was assembled and baked for a month connected

to a turbo pump. The long bake time is due to the low conductance to the atom source

region. After the baking procedure the was completed the chamber was cooled and the

copper tube connecting the chamber to the turbo pump was pinched off using a hydraulic

press forming a cold-welded UHV compatible permanent seal.

Initial pressure readings from the ion pump controller suggested pressures around

10−11 torr in the science region, however during a fluorescence check in the atom source

region an internal arcing event, in the power supply heating the dispensers, caused an

excess of 6 A through the dispensers causing a significant increase in the vapor pressure.

The vapor pressure on the ion pump controller reads around 10−8 torr. MOT lifetimes,

extrapolated to 0 density to account for the effect of two-body losses, and single atom

FORT lifetimes are measured around 5 s implying a background pressure in the science

region of ∼ 4× 10−9 torr [71].

8.0.2 MOTs

The 2D-MOT is formed by 2 sets of counter-propagating beams from 4 independent fiber

launchers and 4 independent gradient field coils. The gradient coil currents and power

balances are set to balance the light forces the atoms experience. Independent, as opposed

to retro-reflected, beams mean that the intensity can be fully balanced despite the fact that

the cell is not AR coated. The transverse velocity distribution is cooled by the 4 beams,

while the longitudinal velocity is still the room-temperature velocity. The trappable atom

flux are atoms with 0 < vz <∼ 30m/s, this flux can be significantly increased with an
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Figure 8.6: A simulation of the z-velocity distribution of Rb87 atoms (yellow) at 300 K
and (blue) after a 1 ms push beam laser pulse with s0 = 1, demonstrating the depletion
of atoms in the velocity class inside the Doppler profile of the laser. There is build-up of
atoms just outside the Doppler profile which can be adjusted by changing the push-beam
detuning.

additional push beam in the +ẑ direction, near resonant with the cycling transition. The

push beam increases the z velocity of atoms within the Doppler profile of the laser and

increases the probability to find an atom in the trappable velocity range[83]. A simple

1D toy simulation demonstrating this is shown in Figure 8.6.

The 3D-MOT is formed by 3 sets of counter-propagating beams from 6 independent

fiber launchers and a quadrupole field coil. There are 3 sets of magnetic field bias shim

coils that are oriented with the FORT, and are therefore rotated 60 degrees relative to the

MOT quadrupole axis. The MOT z beams are aligned along the quadrupole field axis,

normal to a pair of the hexagonal faces. The MOT X and Y beams form an ”X” in the

plane 75 degrees from the z-axis and the X and Y beam cross at an angle of 80 degrees.

The 2D- and 3D-MOT beams derive from the same master oscillator as shown in Figure

8.7. The master oscillator is pre-shifted red before the Modulation Transfer Spectroscopy

(MTS) Lock so that the Master oscillator is ∼ 225 MHz blue of the F = 2 → F ′ = 3

hyperfine manifold. This makes sure that any leakage, when the laser light is heavily

attenuated, is off resonant with the trapped atoms. Additionally, shutters based on DC
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Figure 8.7: A functional diagram of the lasers required to generate the 2D- and 3D-
MOTs. All lenses and beam steering have been omitted for clarity. Optical element
symbols are from the ComponentLibrary package[85].

motors described in reference [84] are used to completely block the 3D-MOT beams from

the optical pumping stage to the readout stage. The blow-away procedure is accomplished

by having one of the MOT Z shutters open before the rest and turning on the MOT light

with the AOM near resonant with the cycling transition. This provides a state selective

unbalanced radiation pressure, and eject the |0〉 population from the trap.

8.0.3 Ground Raman Laser

The fast ground Raman laser [55] has not changed functionally during the upgrade, how-

ever it was condensed to take up less table space. A functional diagram is shown in Figure

8.8. The Raman laser is combined with the Rydberg 7800(1) lasers on a switchboard. The

Raman laser has a DC motor shutter to prevent leakage from affecting the qubit state.
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Figure 8.8: A functional diagram of the fast ground Raman laser used to rotate individual
site qubit states. This laser is used for diagnostic experiments, since all ensemble protocols
require state rotations to be through the Rydberg state to correctly limit the Hilbert space.
All lenses and beam steering have been omitted for clarity. Optical element symbols are
from the ComponentLibrary package[85].
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8.0.4 Rydberg Lasers

A functional diagram of the Rydberg laser sources are shown in Figure 8.9.

The Rydberg lasers are all simultaneously locked to the same ULE cavity. This was

actually the case for the ”main apparatus”, as the 7801 was changed from a phase-lock

due to performance issues in reference [25]. The 780 lasers are modulated at different

frequencies and have orthogonal polarizations to decouple the PDH error signal generation

from each other. The old homemade 7800 grating based ECDL laser was replaced with a

commercial Moglabs Interference Filter ECDL (IF-ECDL). The servo-loop is for this laser

has been replaced with the Moglabs laser driver with some homemade modifications.

All Rydberg lasers servos have been modified so that the medium loop now includes

a ”PDH boost” circuit after the demodulation and low-pass filter, see Figure 8.10. The

boost circuit includes a zero in the transfer function to counter the pole in the error signal

at half the ULE cavity linewidth, ν ∼ 5 kHz fzero = ν/2. This addition has made the

cavity locks significantly more robust, see Figure 8.12 which shows the cavity transmission.

8.0.5 Addressing Laser Systems

The 780 addressing laser system optics are combined with the co-propagating 1064(1038)

nm FORT laser optics and the counter-propagating 780 atom fluorescence signal optics on

a single 1/4” Stainless Steel breadboard. The optical train is shown in Figure 8.13. The

optical train is functionally similar to the original design but the optical path length of the

FORT train has been decreased from ∼ 1.7 to ∼ 0.57 m and the 780 Addressing train from

∼ 2.4 to ∼ 0.52 m. Due to the change to a small all-glass vacuum chamber, the NA of

the collection optics have been increased from 0.35 to 0.4 while simultaneously decreasing

the diameter of the optics from 120 mm to 25.4 mm. The PBS used in the old design

to deflect the fluorescence from the addressing laser path to the EMCCD camera has

been replaced with a custom beamsplitter with 70% s-polarized and > 95% p-polarized

transmission coefficients, see Figure 8.14. Therefore the transmission for unpolarized light
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Figure 8.9: A functional diagram of the Rydberg laser sources. Note that all Rydberg
lasers are now locked simultaneously to the ULE reference cavity. All lenses and beam
steering have been omitted for clarity. Optical element symbols are from the Compo-
nentLibrary package[85].
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Figure 8.10: PDH boost circuit.

Figure 8.11: ULE cavity transmission for 7800 laser. The laser is locked when the
transmission is high and unlocked when it is low. The PDH boost circuit was added
around 17:00, compare to the cavity lock stability before. The laser will stay locked for
> 24 hours regularly under typical lab conditions.
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Figure 8.12: The binary lock state of the 7800 laser to the ULE cavity, measured by
comparison of the 7800 cavity transmission to a threshold. The laser is locked when the
lock state is high and unlocked when it is low. During the month time period shown, the
laser was mostly left alone and no special precautions were taken to either maintain or
relock the laser. The most likely cause for the laser unlocking is the piezo voltage drifting
out of range of the servo.

is 82% increasing the collection efficiency by 164%.

Closed-Loop Picomotor Alignment

In order to maintain high-fidelity operation, the relative alignment of the 780 and 480

nm addressing lasers with respect to the atoms must be maintained. The 2-photon Rabi

frequency and the AC stark shift spatial gradients are minimized when the addressing

lasers are centered on the atoms. The alignment is most sensitive to micron scale drifts

of addressing laser systems in the plane transverse to the optical axis, since the Rayleigh

length of the lasers is much longer than the beam waist at the focal plane. On long

timescales the addressing laser systems drift from the aligned condition due to thermal

cycling and mechanical drifts, and must be re-aligned in the transverse plane on a regular

basis.

To control the transverse position of the 780 and 480 lasers in the plane of the atoms,

we have implemented an automated closed-loop actuator system that translates a lens in

the XY plane. The actuators are linear piezo inertial actuators where a screw is driven

by piezo actuators attached to opposite sides of a split nut that the screw passes through.
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Figure 8.13: The optical train for the new Addressing, FORT, and camera optical trains.
Optical element symbols are from the ComponentLibrary package[85].
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Name Parameters Part No.

f1 f=6.24 mm C110TME-1064
CBD Calcite Beam Displacer

f2 f=60 mm AC254-060-C
DE 5 Spot Diffraction Element

f3 f=19 mm AC127-019-C
f4 f=80 mm AC254-080-B
f5 f=8 mm C240TME-B

DBS Dichroic Beamsplitter
f6 f=200 mm AC254-200-B
f7 f=23.125 mm JenOptik Custom 0.4 NA

Table 8.1: Major optical element from the FORT optical train. Names are referenced to
the names given in Figure 8.13.

Name Parameters Part No.

f0’ f=4.0 mm PAFA-X-B
f1’ f= mm
f2’ f= mm

AOM Acusto-Optical Modulator (+160MHz)
f3’ f=60 mm LA1134-B
f4’ f=35 mm LA1027-B
f5’ f=50 mm AC254-050-B

GT Glan-Taylor Polarizer
λ/4 quarter wave retarder @ 780 nm

DM1 Dichroic Mirror
λ/2 half wave retarder @ 780 nm

DBS Dichroic Beamsplitter
C-NPBS Custom Non-Polarizing Beamsplitter

DBS Dichroic Beamsplitter
f6 f=200 mm AC254-200-B
f7 f=23.125 mm JenOptik Custom 0.4 NA

Table 8.2: Major optical element from the 780 Addressing optical train. Names are
referenced to the names given in Figure 8.13.



141

Name Parameters Part No.

f0” f=8 mm C240TME-A
BS Beam Sampler

AOM Acusto-Optical Modulator (-160MHz)
GT Glan-Taylor Polarizer
f1” f=50 mm PAC15AR.15
λ/4 quarter wave retarder @ 488 nm
λ/4 quarter wave retarder @ 488 nm

DBS Dichroic Beamsplitter
f2” f=400 mm JML DB14215
f3” f=110 mm Custom Triplet

Table 8.3: Major optical element from the 480 Addressing optical train. Names are
referenced to the names given in Figure 8.13.

Name Parameters Part No.

f7 f=23.125 mm JenOptik Custom 0.4 NA
f6 f=200 mm AC254-200-B

DBS Dichroic Beamsplitter
λ/2 half wave retarder @ 780 nm

DM1 Dichroic Mirror
λ/4 quarter wave retarder @ 780 nm

C-NPBS Custom Non-Polarizing Beamsplitter
f8 f=150 mm 47-380
IF Interference Filter (780 nm Bandpass)
f9 f=100 mm 45-806

EMCCD Electron Multiplying CCD Camera Andor

Table 8.4: Major optical element from the EMCCD camera optical train. Names are
referenced to the names given in Figure 8.13.

Name Parameters Part No.

f10 f=TDB mm TBD
f11 f=TBD mm TBD

DM2 Dichroic Mirror
PBS Polarizing Beamsplitter

f12 f=100 mm 45-806
IF Interference Filter (780 nm Bandpass)

CCD CCD Camera Point Grey

Table 8.5: Major optical element from the Automatic Alignment System optical train.
Names are referenced to the names given in Figure 8.13.
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Figure 8.14: Diagram of the custom beamsplitter that picks off the back-propagating
fluorescence signal to the EMCCD camera. The blue path represents the atomic fluores-
cence signal back propagating, while the red path shows the 780 addressing laser where
the refelcted light is going towards the atoms and the transmitted is blocked.

This means that the piezo is only on when moving the actuator. When the unit is not

moving it has a similar level of stability to a typical screw actuator system. This removes

any issue of high frequency oscillations from improperly compensated traditional piezo

motion stages. The closed-loop Picomotor system is described in detail in Appendix C.

Automated alternatives to Picomotors include piezo actuators and stepper motors.

Piezo actuators have a limited range of motion which is insufficient for the application,

while stepper motors vibrate in the holding position enough to disturb our measurements.

Picomotors also have the convenient characteristic that they only require power when

under motion.

Automatic Alignment System

The Automatic Alignment System (AAS) uses an off-the-shelf CCD camera to provide

long-term relative stabilization of the FORT, 780, and 480 addressing systems, as shown

in Figure 8.13, to maximize the time between scans based on an atomic signal. Alignment

scans for the 780 addressing laser are performed on single atoms by performing a ground

state rotation laser pulse at some position R̂(θ, x, y), where θ < π and |〈1|R̂(θ, 0, 0)|0〉|2 ∼
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0.7, to partially rotate the internal state of the atom. As the laser is moved across the

atoms during the scan the Rabi frequency and detuning (due to AC Stark shits) degrade

the state transfer probability. The 480 addressing laser alignment is performed by a similar

procedure using Rydberg excitation and therefore depends on the correct alignment of the

780 addressing laser. From the resulting data, the position of the atom cloud is assumed

from the center of a Gaussian fit to the data, an example data set is shown in Figure 8.15.

The alignment scan in Figure 8.15 has 12 data points, 70 measurements per position, a

cycle time of 400 ms, and an assumed loading rate of 25%. Therefore without overhead

it should take 23 minutes to complete (the scan actually took 30 minutes). In the older

apparatus, a 780 addressing alignment was required once a week with a 480 addressing

alignment required daily, assuming no environmental temperature swings. In the old

apparatus the cycle time was > 600 ms, so the alignment maintenance could add over 9

hours a week of alignment maintenance or 22% of a 40 hour work week.2 Decreasing the

maintenance overhead by performing measurements with a camera instead could increase

the effective uptime of the experiment significantly.

The FORT and 780 Addressing lasers are re-imaged onto a Point Grey BFLY-PGE-

12A2M-CS CCD camera after passing through the vacuum chamber. The magnification

for the 780 and 1064 imaging is determined by measuring the separation between trap

sites, which is a known quantity and is not affected by a reduction in image quality. The

relative positions of the FORT and 780 Addressing laser are found on the camera by taking

the average position from 2D fits to many images. The FORT and 780 Addressing lasers

are toggled out of phase with each other at approximately 50 Hz so that the camera images

are interleaved between the two lasers at high speed. This reduces the susceptibility of

the measurement to common mode vibrations. The 480 Addressing laser is imaged onto

the camera by taking the leakage through the dichroic beamsplitter and combining it with

the FORT and 780 path via a dichroic mirror reflective at 480 nm. The EMCCD camera

2Or equivalently 7.1% of a work week assuming an ideal graduate student
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Figure 8.15: An example 780 addressing laser alignment along the vertical axis. The
ground state rotation laser pulse is set to be approximately 70% state rotation when
aligned. The state transfer probability degrades as the addressing laser moves away from
the center of the atom cloud. The horizontal axis is in degrees of the Picomotor actuator
screw, the calibration from degrees to position in the plane of the atoms is approximately
0.113 µm/deg. The vertical beam waist of the 780 Addressing laser is 10.2 µm.

is also capable of imaging the 480 nm laser, from leakage through the 780 nm notch filter,

and could be used as a second camera to remove common mode fluctuations. Finally if

necessary, there is also an additional dichroic mirror built into the 780 Addressing path

that transmits 480 nm light which could be imaged onto a third camera if necessary.
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Chapter 9

Outlook

In this thesis critical initial demonstrations of neutral atom ensemble qubits with inter-

actions mediated by Rydberg blockade were presented. We presented observations of the
√
N collective Rabi frequency enhancement (Section 2.2), generation of N = 1 and 2

Fock states with very sub-Poissonian Mandel parameters of Q = −0.62(3) and −0.50(5)

respectively (Section 2.3) We also characterized the output N = 1 Fock state and the

W-state character of the resulting ensemble state using two separate measurements of

total angular momentum as an entanglement witness (Sections 3.1 and 3.2). These two

method give k-partite entanglement limits of k/N = 0.82(6) and k/N = 1.0(1). Ensemble

W-state excitation coherence times of 2.6(3) ms were presented, which give a coherence

to gate time ratio of ∼ 2600. The limiting factor in the ensemble coherence time appears

to be collisional dephasing (Section 3.1). We then moved on to the first demonstration

of Rydberg blockade between two ensemble qubits (Section 4.2.1. An ensemble-ensemble

blockade fidelity of 0.89(1) is shown and a fidelity consistent with 1.0 when postselected

on a control ensemble excitation.

Based on the observed N = 1 amplitude discrepancy between the experiment and the

current theory, we also propose two mechanisms, one at long-range (R > RB) and one

at short-range (R < Rs), for the creation of doubly excited Rydberg states (Chapter 5).
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The doubly excited state undergoes a fast molecular evolution to states that are dark to

the Rydberg excitation lasers. These molecules remain in the area of the ensemble and

continue to suppress subsequent excitations, but are not de-excited and as such are not

detectable by our experiment. This results in an unanticipated postselection that aids

us in observing ”clean” ensemble Rydberg dynamics at a lower amplitude than expected,

since any Rydberg blockade leakage destroys itself and results in the apparent observation

of the |0̄〉 state.

We then discussed the theoretical models used in these experiments (Chapter 6), as

well as camera signals models for interpreting various atom number measurement exper-

iments (Chapter 7).

Finally, we discussed the improved experimental apparatus that has been built to

replace the apparatus that took the data in this thesis (Chapter 8). The apparatus is

physically smaller, has a shorter duty cycle, a shorter single-atom camera exposure time,

and higher retention. All of which should combine to reduce downtime, improve stability,

and reduce the amount of data that is necessary to achieve the same statistical uncertainty.

The major experimental thrust of the new apparatus will be to reduce the short-

range blockade leakage proposed in Chapter 5. To do this a 1D 770 nm crossed dipole

blue-detuned lattice is planned, which will impose a minimum spacing along the axial

dimension of the existing pencil shaped red-detuned FORT sites. The planned opening

angle for the crossed dipole will impose a minimum spacing of 1.5 µm. If an improve-

ment in the ensemble F1 procedure amplitude is observed with this minimum spacing, we

will have confirmed the existence of the short-range molecular excitation channels. We

could then implement additional plans to mitigate the effect of the interaction. If the

source of the amplitude discrepancy can be minimized such that even the predicted 80%

F1 amplitude is achieved, the first demonstration of ensemble-ensemble entanglement via

Rydberg blockade can be performed with a straightforward parity oscillation measure-

ment. A demonstration of an entangling gate for ensemble qubits would fulfill the last
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of the requirements to realize Rydberg mediated ensemble qubits as a viable quantum

information platform.

In the new apparatus, our ability to detect single excitations has improved drastically

due to the increased NA of the imaging lens (0.3 → 0.45), the installation of a custom

beamsplitter cube designed to transmit 82% of the scattered photons during the imaging

stage, and the reduction of the EMCCD camera magnification from a 3x3 to a 2x2 ROI

which cuts down the background while maintaining an equivalent photon signal. The

improved signal to noise has allowed us to reduce the total number of scattering events

necessary to achieve the same fidelity of readout. This has put us in range of being able to

implement a non-destructive state-selective readout procedure (ND-SSRO), see Section

7.3. A reliable ND-SSRO has the promise to greatly improve the data collection rate,

since multiple experiments can be performed following the FORT loading phase which

accounts for about half of the total duty cycle. Additionally with the current blow-away

infidelity of 0.2%/atom, N = 1 Fock states in ensemble of up to about 500 atoms can

now be detected with unity SNR. This should allow us to test single photon emitters and

receivers with no cavity enhancement in the near future[77]. The ND-SSRO procedure

has not yet been tested in an ensemble, but it may be able to detect N = 1 states at a

similar or better level as well.
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Appendix A

Blockade Shift Calculations

The Rydberg Blockade shift arises from the large dipole-dipole interactions between

Rydberg-Rydberg molecular states. In general the magnitude of the van der Waals ef-

fect will scale as R−6, where R is the interatomic distance. However, in the case of a

second (or more) nearly-degenerate, dipole-allowed Rydberg-Rydberg molecular state(s),

2E(|nj〉) ∼ E(|n1j1〉) + E(|n2j2〉), Förster coupling between the molecular states results

in an enhanced energy shift in the doubly excited |nj〉+ |nj〉 state that scales as R−3 at

close distances.

The dipole-dipole operator Vdd, where the internuclear separation axis is along z, is:

Vdd(R) = −
√

6e2

R3

∑
p

C20
1p1p̄apbp̄, (A.1)

where ap(bp) is the position of atom a(b)’s electron [52].

If we assume j − j1 = 1, then the dipole-dipole molecular coupling matrix element is:

〈ψ′|Vdd|ψ〉 = a〈n1l1j1mj1|b〈n2l2j2mj2|Vdd|nljm〉

= −
√

6e2

R3

∑
p

C20
1p1p̄

(
a〈n1j1mj1|ap|njmj〉a

)(
b〈n2j2mj2|bp̄|njmj〉b

)
≡ C3

R3
,

(A.2)
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where C3 is the electric-dipole coupling coefficient between the two molecular Rydberg

states. Using the reduced and Radial matrix element definitions from reference [52], and

assuming the stretched state m1 = j1 = l1 + 1
2
, l1 = l+ 1, m2 = j2 = l2 + 1

2
, and l2 = l−1,

we can write Equation A.1 as:

C3 = −

√
6(l + 1)(2l + 1)

l(2l + 3)
Rn1(l+1)
nl Rn2(l−1)

nl (A.3)

Under the special condition where j = l + 1
2

this simplifies to:

Vdd(R) = −
√

2
e2

R3
〈n1`1||r||n`〉〈n2`2||r||n`〉 (A.4)

Therefore the Förster coupling between the two molecular states is V = C3/R
3 and

the Hamiltonian is:

Hdd =



0 V1 V2 · · ·

V1 δ1 0

V2 0 δ2

...
. . .


, (A.5)

where δi is the Förster defect (molecular state energy difference) of the ith molecular state.

In the limit of a single molecular state with a small Förster defect the dipole-dipole

shift of the doubly excited state becomes:

Udd(R) =
δ

2

1−

√
1 +

(
2C3

δR3

)2
 . (A.6)

In the limit δR−3 � C3 there is weak coupling and we obtain the expected van der Waals

behavior Udd(R) ≈ C2
3/δR

6 ≡ C6/R
6. However, for δR−3 � C3 the interaction is now

Udd(R) ≈ δ
2
− C3

R3 . The effect of a Förster resonance, δ ∼ 0, is to increase the critical

distance Rc = C
1/3
3 by a factor of δ−1/3 where the characteristic of the potential changes

from R−3 to R−6. Careful selection of Rydberg levels with Förster resonances in mind
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can decrease the principle quantum number n required to realize a sufficient blockade

strength.

A.1 97D5/2,mj = 5/2

The nearly degenerate molecular states which contribute the most to the blockade shift

for the first term in Equation A.1 are:

97D5/2 + 97D5/2 ↔ 99P3/2 + 95F7/2 (A.7)

and

97D5/2 + 97D5/2 ↔ 98P3/2 + 96F7/2. (A.8)

Using experimentally determined Rydberg energy defects[86], the Förster defects are

δ(1,2) = (150, 238) MHz respectively.

Since we are only exciting the stretched |nD5/2,mj = 5/2〉 state the only electric-dipole

allowed fine-structure coupling is to the |n1P3/2,mj = 3/2〉+ |n1F7/2,mj = 7/2〉 molecular

state, which are both also stretched states. Therefore the dipole-dipole coupling term,

C3, term for each molecular state is:

C
(1)
3 = −

√
2× 21.8 GHz · µm3,

C
(2)
3 = −

√
2× 61.2 GHz · µm3.

(A.9)

The
√

2 factor in front of the numerical C3 terms accounts for the symmetry of the initial

molecular state, which was not considered before. If a non-symmetric initial state is used,

or if the molecular basis states count both the nP +n′F and n′F +nP states, then the
√

2

term should be dropped. A non-symmetric initial state between identical or different atom

species can be used to decrease the Förster defect, δ, and generate stronger interactions

between atoms[87].
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Figure A.1: A simple three molecular state approximation of the Rydberg-Rydberg
interaction potentials accounts for most of the long-range interaction. The zero energy
point is defined as the 97D+ 97D disassociation energy limit. The blockading interaction
is shown in blue.

We can then build the dipole-dipole interaction Hamiltonian:

Hdd =


0 −

√
2× 21.8 −

√
2× 61.2

−
√

2× 21.8 0.150 0

−
√

2× 61.2 0 0.238

 , (A.10)

and solve for the eigenvalues and eigenvectors of the system. The result is shown in Figure

A.1.

In order to observe molecular resonances, it is necessary to add in states that couple

to the nP + n′F states such as n′′D + n′′′D among others.
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Appendix B

Expected Background Blow-Away

Leakage Rate

This appendix outlines the logic and assumptions behind the Ensemble-Ensemble Block-

ade background calculation, when cutting on a single atom signal in the control site.

We need data from at least 3 experiments to generate the background rate estimation,

a data set with a control site pulse:

B̂(θ) ≡ π̂C1
1 π̂T1

1 θ̂T0
N̄T
π̂C0
N̄C
, (B.1)

and a data set with everything the same except the AC1 pulse removed:

B̂off (θ) ≡ π̂C1
1 π̂T1

1 θ̂T0
N̄T
, (B.2)

and either a multi-atom readout or a single atom loading curve on the control site to obtain

the control mean atom number N̄C . The target site atom number, N̄T , can be obtained

in a similar way using the pulse sequence in B.2. The blow-away leakage probabilities

ρ
(C,T )
BA can be obtained from the first points in the unblockaded collective Rabi oscillation

curves.
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Due to the blowaway leakage (on the order of 2-0.1%/atom) a certain false positive

rate, ε, will occur when cutting on the control site |F = 1〉 population. To obtain ε we

need the blow-away leakage rate per atom ρ
(C)
BA in the control site and the atom number

in the control site.

ε =
N̄Cρ

(C)
BA

(nC/n)
=

probability of BA leakage event

probability to detect an atom in the control
(B.3)

where n is the total number of shots taken and nC is the number of shots that pass the

control cut. Since the control success rate change with θT , ε will also depends on θT .

When a control event is detected, it is assumed to be either due to a successful Rydberg

transfer from |F = 2〉 to |F = 1〉, or an erroneous cut. In the first case, under the

assumption of perfect blockade, the target can show an atom due to the blowaway leakage

in the target site, which occurs at a rate:

N̄Tρ
(T )
BA. (B.4)

In the second case the result is the normal unblockaded evolution of the target site PT (θT ).

Combining the two cases with their likelihoods we obtain the background rate equation

under the assumption of perfect blockade:

Pbkg(1T |1C) = ε(θT )PT (θT ) + [1− ε(θT )] N̄Tρ
(T )
BA (B.5)
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Appendix C

Closed-Loop Picomotor Alignment

System

The actuators are linear piezo inertial actuators where a screw is driven by piezo actuators

attached to opposite sides of a split nut that the screw passes through, see Figure C.1.

The piezo actuators move in opposite directions slow enough to not slip and turn the

screw, the piezo then resets position fast enough to slip and not reverse the screw motion.

Figure C.1: Diagram of the piezo actuated split nut mechanics that turn the screw.[88]

Commercial closed-loop Picomotor systems are available, however not in the form fac-
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Figure C.2: Diagram of the split nut turning the screw.[88]

tor required to interface with the commercially available 30 mm cage mount XY translator

used to translate the alignment lens. Because of the mechanical restriction, and the in-

creased cost, the choice was made to instead develop a closed loop system in house based

on a high sensitivity Avago HEDR-55L2-BH07 optical quadrature encoders. The finished

assembly and some helpful images can be found in Figure C.3. Most commercial cage

mounted XY translators are either not easy to deconstruct or have mechanics that are not

kinematically sound when combined with the round screw tip on the Picomotor actuator.

The Qoptiq G065070000 XY translator is designed with a round tipped screw actuator

and with a custom M10x0.5 mm to 1/4”-40 thread adapter the tiny Picomotor shaft

can screw directly into the translator after removing the stock actuator and bushing. The

stock springs (0.667 N/mm) in the actuator need to be replaced with weaker (0.47 N/mm)

springs, which we purchase from Lee Spring, PN: LC 014AA 08S316. Disassembling of

the translator will remove the dry lubricant on the translator. I have had good luck with

spraying a bottle of PTFE dry lubricant into a beaker then applying the lubricant to the

contact points with a cotton swab before reassembly. Because of excessive seizing on one

of the devices, I did successfully use an oil based lubricant to improve performance.

The thumb knob on the actuator needs to be removed from the shaft so a custom
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Quadrature Encoder

Shaft Coupler

#6-80 Nut

Picomotor

Encoder Mount

M10x0.5mm to 1/4-40
Thread Adapter

30mm Cage Mount
XY-Translator

a) c)

d)

e)

b)

Figure C.3: The custom closed-loop Picomotor mechanics. Do NOT disassemble the
encoder other than removing the lid. The markings on the wheel are very easy to damage
so leave it in the encoder housing. a) Front and b) back side of the encoder wheel. c)
Newport tiny Picomotor 8354 with thumb knob removed. d) An assembled XY translation
stage installed in the 780 addressing laser system. e) An exploded view of the components
required. The XY translator can be replaced with any appropriate kinematic mount by
replacing or removing the thread adapter.

shaft coupler and nut can be mounted on the end of the screw. To remove the knob, use

a #6-80 nut on the screw to tighten it against the shank to prevent rotational motion,

then put the knob in a vise and twist it to break the Loctite seal. Excessive pressure from

the #6-80 nut or torque on the screw when breaking the seal can damage the device, so

use caution.1 The nut and shaft coupler are then attached to the back end of the screw

and tightened to prevent loosening. The actuator is then screwed onto the translator

with the thread adapter, using a custom encoder mount machined from square stock as a

”washer”. Excessive tightening of the Picomotor actuator can cause the Picomotor to seize

or otherwise malfunction, sometimes permanently damaging it, so resist the temptation

to over-tighten. Do not remove the screw from the drive mechanism, because the fine

1Based on conversations with the vendor it may be safer to use a solvent, but I have not had the
opportunity to try yet.
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pitch threads are very fragile. Remove the lid of the encoder, being careful to not mar the

the encoder wheel which is also easily damaged.2 Screw the lid onto the encoder mount.

At this time you should verify that you have the full range of motion expected, because

after attaching the encoder you will lose the ability to manually move the actuator screw.

When ready to proceed, insert a hex key into the side of the encoder through a hole

used to tighten the M3 set-screw, located on the encoder wheel, on the shaft coupler.

Remove the set-screw from the hole and apply Loctite 222MS to the threads of the set-

screw to prevent loosening. Reinsert the set-screw into the encoder wheel, leaving the

hex key protruding from the side. Align the axis of the shaft coupler to match the set-

screw position. Snap the back onto the encoder body, then tighten the set-screw onto the

shaft coupler until the shaft can just barely slide axially on the encoder wheel while the

set-screw is in the slot. Since the screw will slide in and out in the course of motion it is

necessary to having a sliding mate, and necessary to use Loctite to prevent the set-screw

from backing its way out of the hole with no pressure on the threads.

The encoder ribbon cable is then attached to a device which can read the encoder

state transitions and record the current position. Since the quadrature encoder can only

report direction of motion i.e. ±1 step it is necessary to use a device that can constantly

monitor the quadrature encoder signals and can read the values at a rate faster than

the states can change for the application. The initial iteration used a Raspberry Pi

Single Board Computer (SBC) to monitor the encoder state, however it was not able to

read the encoder state fast enough and occasionally missed events on the 780 addressing

horizontal channel. Switching to a dedicated decoder IC (Avago HCTL-2032-SC) and a

custom Ethernet-capable Arduino Mega 2560 clone (MCU) improved the performance.

Code for the control server can be found at reference [89]. Arduino firmware for the

decoder chip can be found at reference [90]. The final control loop design can be seen

in Figure C.4. It should be noted that in the current configuration positive motion is

2Basically just don’t touch anything. Ever.
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unscrewing the alignment screw so it always steps in the negative direction.

Picomotor Position

Disturbances

Encoder Reading

x0 ∆x x
−

xm

Figure C.4: Control loop diagram for an axis of the closed loop Picomotor system. The
ideal screw angle set-point is x0. On a change of the set-point x0 a loop is run where the
Picomotor movement is set to be 70-80% of the ideal movement to correct the error so
the system behaves as an over-damped system and only approaches the set-point from
one side, where the screw is pushing to prevent backlash errors. Since the screw position
is long-term stable there is no need to run the control loop if there is no change to the
set-point.

A diagram showing the specific implementation of the Picomotor control system is

shown in Figure C.6. A ZeroMQ TCP server listens for SCPI style commands to move

the motor positions. The server handles the low-level telnet interface to the Newport 8742

Picomotor controller as well as reading the screw angle from the MCU monitoring the

encoder. The server queues commands so that all commands to the controller are blocking

commands, instead of the default where queries can be made while an instruction is in

process. The server implements a one-sided ”Zeno’s Arrow” approach to the set-point,

where the movement is 70-90% of the ideal movement and iterated, minimizing overshoot

and backlash errors. If the set-point requires counter-clockwise motion to the approach,

the set-point is overshot and approached from the clockwise direction. Since the screw

position is long-term stable, there is no need to run the control loop if there is no change

to the set-point.
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Controller Picomotor Position

Disturbances

Alignment

Disturbances

Encoder Reading

Image Analysis

X0 ∆X x0 ∆x x
−

xm

X

−

Xm

Figure C.5: Control loop diagram for the Automatic Alignment System. An additional
feedback loop is added where the lasers are re-imaged onto a CCD camera and the relative
positions of the lasers, Xm, are recorded via an analysis script. The set-point for the outer
loop, X0, sets the screw position of the Picomotor loop. X0 is set to maintain the relative
beam separation of the lasers in question after a successful alignment scan to the atoms.
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Avago 
HCTL-2032-SC 

Closed-Loop 
Picomotor Assem. Closed-Loop 

Picomotor Assem. Closed-Loop 
Picomotor Assem. Closed-Loop 

Picomotor Assem. 

Newport 8742 
Picomotor Controller 

4xRJ11 

4xEncoder 
Output 

Avago 
HCTL-2032-SC 

VMEMega 

PyPico 
Server 

Client 

PointGrey 
BFLY-PGE-12A2M-CS 

TCP 
ZeroMQ 
Optical 
Non-Ethernet Connection 

Figure C.6: Specific implementation of the custom closed-loop Picomotor positioner
and the Automatic Alignment System. Blue connections are made via TCP/IP, red
connections are ZeroMQ REQ/REP sockets, gray connections are non-Ethernet based
electrical connections, and green connections represent the lasers which are imaged on
the Point Grey CCD camera. Each Avago HCTL-2031-SC decoder IC manages 2 encoder
channels. The VMEMega is a custom Arduino Mega 2560 MCU with built-in Ethernet
interface which fits into a 3U Eurocard Subrack chassis with a VME J1 backplane. The
VME backplane is used as a simple mechanical and electrical distribution network and
does not implement the VME protocols. The Avago decoder ICs are installed in a custom
3U Eurocard daughterboard with a form factor that matches the standard Arduino Mega
daughtercard pinout. The LAN topology is ignored.
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Appendix D

Coil Driver

The coil driver project was a joint undergraduate project by Erik Meyers that I supervised.

Sydney Lybert also deserves credit for building and debugging an impressive number of

these circuits. At the time of this writing 56 coil driver units have been produced for the

labs. The fundamental design was adapted from Alan Stummer’s ”Triple Coil Driver”[91].

Most of the improvements to the base design are protection circuitry, a modular design,

and a pseudo-differential input to prevent ground loops.

The coil driver assembly consists of three units: a coil driver, a front panel, and a

custom high-current backplane. The coil driver board provides the basic functionality[92].

The front panel includes over-temperature protection logic, current monitor outputs, and

status LEDs[93]. The high-current backplane is a lab-standard developed for high-current

or cards that drive inductive loads[94]. The back plane is also used for DC shutter driver

boards[95].

The goals of the design were to create generic interchangeable voltage-to-current

drivers capable of driving an inductive load at ±3 A and up to 5 A with small modi-

fication. Linear regulators have an intrinsic power dissipation issue. For a load R with a

steady state current of I the power dissipated in the transistor regulating the current is

Pt = (Vs − IR)I. For large over head voltages Voh = Vs − IR, the power the transistor
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Figure D.1: The coil driver units. Clockwise from top-left: the coil driver board, the coil
driver in its box with the purple front panel visible, and a full rack of 7 coil driver units.

must dissipate can be considerable. For example a typical load may be R = 1 Ω driven

at 3 A, if a supply voltage Vs = 10 V is used Pt = 21 W. The basic implementation uses

forced air cooling and does not have the cooling power to handle this load. Temperature

sensors on the transistor heat sinks will automatically short the op-amp to turn off the

current if the temperature exceeds ∼ 60 C. Unfortunately, switching times are improved

with higher supply voltages, so it is common to run higher current coil drivers from a

different, lower voltage power supply than lower current drivers that need to operate at

higher bandwidths. The coil driver backplane has been designed to allow for units to

operate at different supply voltages.

The accuracy of the current (Figure D.2) and current monitor (Figure D.3) calibrations

are typically within 1% of nominal, which means in-situ re-calibration is not required for

most applications.

The stability has been measured to be good to ±20 ppm at 1 A after an initial warm-up
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Figure D.2: An example calibration of a coil driver input. The linear fit for this data is
C(Vin) = 0.00129657− 0.994236Vin, where C(Vin = −Vin) is nominal.

Figure D.3: An example calibration of a coil driver monitor output. The linear fit for
this data is C(Vmon) = 0.000271118 + 1.00031Vmon, where C(Vmon = Vmon) is nominal.
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Figure D.4: Current output set at nominally 1 A, where the unit was cold started and
drive off a stable, low-noise 5 V with a 400R and 1.6k voltage divider (metal film resistors)
to give ∼ 1 V input control voltage.

of 3 hours, Figure D.4.

Switching times between DC current levels is an important design consideration. A

typical method for improving switching time of an inductive load is to choose an appro-

priate dissipation resistor so that the LRC circuit is critically damped. This is not a

general solution, instead the coil driver uses three feedback paths to compensate for the

inductive load: a DC path, a ”dampening” path, and a ”bandwidth” path. The DC path

feeds back to the instantaneous current level read from the low-side shunt resistor. The

dampening and bandwidth feedback loops are high-passed measurements of the voltage

before and after the load. If the coil undergoes a rapid change in frequency, the bandwidth

and dampening paths will have a phase offset and the variable gains for each path allow

the user to optimize the switching behavior. For a 1 mH 1 Ω load a 1/e switching time

of 46 mus is typical.

Without adding additional control complexity, for example a toggle between high and

low bandwidth modes, bandwidth and noise must be balanced for the application. The

default 3 dB bandwidth is around 3.5 kHz. The current noise is dominated by 1/f noise

out to 20 kHz. In this bandwidth the current noise is around 550 µArms for a 1 A current.
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Appendix E

VME-derived Subrack System

Subrack systems that share a backplane have advantages over traditional boxed units

typically used in lab settings. With some reasonable contraints on system parameters,

the un-fun apsects of building electronics such as boxing, connectorizing, and powering

units can be standardized. Since the mechanical design of a backplane system is not trivial

we have decided to repurpose the 3U VME obsolete backplane with our own lab standard

for connections. This allows us to minimize cabling by powering many devices with a

single connection, sharing trigger bus lines, and a synchronized clock. We are following

the original standard loosly for pinout definitions, such as reusing the +5 V power lines

and replacing the ±12 V power with our ±15 V lab standard. The details of the ”lab

standard” pinout has not been finalized, so I will not be going into specifics. Instead I

am laying out in broad strokes the framework for the project. Devices that build on this

system are presented in following appendicies and the primary host card, the VMEMega,

will be discussed here.

Each rack will have a control card that can sit anywhere in the unit, which will

distribute triggers on the backplane to listening devices, as well as a 10 MHz GPS reference

clock, and power status indicators. Devices can listen for triggers on the backplane but

any device communication necessary will happen through Ethernet, since this technology
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is robust, relatively easy to implement, and commercial solutions exist for routing.

We have found it cost effective an easy to build front panels from PCB boards to in-

crease circuit density compared to a metal front panel. Chassis shielding with a PCB front

panel can be accomplished by making ground planes on the PCB and plated mounting

holes. Since we have ample experience with PCB manufactoring this is a good option.

The VMEMega is a custom Arduino Mega microcontroller design to match the VME’s

3U Eurocard formfactor and provide a basis for expansion of simple circuits. Design

files can be found at reference [96]. The VMEMega has 3 communication interfaces:

USB/Serial, 10 Mbps Ethernet, and timing/triggering over the backplane. Any shield

that works with the Arduino Mega will work with the VMEMega provided that the SPI

bus connected Ethernet controller pins are not used. The hardware C̄S pin 53 and the Eth-

ernet ¯RST pin 49, must not be used for other purposes. I have developed a command line

development environment for compiling and uploading AVR and Arduino based firmware,

which can be found at reference [97]. Eventually a set of libraries compatable with the

Arduino IDE will be created from these libraries.1

1Eventually...
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Appendix F

Transimpedance Amplifier

One of the challenges of operating a complicated experiment that requires a high degree of

stability is the number of parameters that must be monitored and potentially incorporated

into a feedback loop. For example, monitoring the lasers powers of the 2D- and 3D-MOT

beams in-situ requires 10 detectors. At near 20 detectors per experiment and considering

the four other experiments that have or will have similar a requirement, a custom solution

is warranted given that a typical integrated transimpedance amplifier can cost upwards

of $300 per unit. An advantage of a custom design is that the mechanics can be built to

our needs. Furthermore, the circuit boards can be configured to work in ”standalone”-

mode where the photodiode is mounted some distance away due to space constraints or

legacy hardware. Images of the integrate photodiode system can be seen in Figure F.1

and Figure F.2. A circuit schematic is shown in Figure F.3

Development of an optimal transimpedance amplifier is highly dependent on the ex-

pected photocurrent and desired output voltage.1 These specifications set the feedback

resistor, Rf , for the amplifier stage, while the photodiode capacitance (plus parasitic

capacitance) and transimpedance resistor sets the bandwidth. To determine the maxi-

mum bandwidth of the device, we can model the transimpedance amplifier as an inductor

1You can read more about this project at my blog: http://www.mebert.org/thread/3, which like
most blogs hasn’t been updated in years. Also the blog has a custom content manager and totally cool,
and not a waste of time.

http://www.mebert.org/thread/3
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Figure F.1: An I2V dii integrated transimpedance amplifier circuit enclosed in it’s custom
machined case.

Figure F.2: An example in-situ mechanical set up where the I2V dii is mounted to a 3D
printed 16 mm cage mount that holds a 1/2” beam sampler at 45 degrees in the path of
a laser.
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Figure F.3: The I2V dii circuit schematic.

with inductance L = Rf/2πGBW , where GBW is the op-amp’s gain bandwidth prod-

uct. Any capacitance in the circuit will create an LC oscillator with resonant frequency

ωLC = (LC)−1/2, see Figure F.4. In order to avoid this resonant mode a feedback capac-

itor Cf is needed to decrease the closed-loop gain so that by ωLC the closed-loop gain is

less than unity. A larger bandwidth can be had by decreasing Rf at the cost of signal, or

the photodiode capacitance which usually reduces the size of the photodiode.

To choose Cf optimally we use the formula:

Cf =

√
8π ×GBW × CdRf + 1 + 1

4π ×GBW ×Rf

, (F.1)

which makes sure that the asymptotic voltage loop gain (solid blue line) is equal to the

op-amp’s open loop gain (dashed red line) at the pole frequency fp (green line), see Figure

F.5. This condition guarantees stable behavior, but the actual design will require a slightly

larger Cf to account for parasitics.

We have chosen to design the system for transimpedances of {103, 104, 105} V/A,

optimized at 104 V/A, with Cf ’s chosen for the FDS100 photodiode. To choose an op-

amp we note that for precision op-amps input current in and voltage vn noises are inversely
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Figure F.4: A simple simulation of the current transfer function for a transimpedance
amplifier with finite gain bandwidth product (GBW). The red(blue) curve is for an Rf =
100(10) kΩ. The solid lines demonstrate the resonance if no feedback capacitor Cf is
included. The dashed lines include an appropriate Cf .

Figure F.5: A diagram demonstrating the characteristic of an optimally chosen feedback
capacitor Cf according to Equation F.1. The solid black line is the voltage transfer
function (Vout/Vin). The dashed blue line is the voltage loop gain (assumes infinite GBW ),
the solid blue line mark the asymptotic voltage-loop gain. The open loop gain of the op-
amp is shown as a dashed red line. The choice of capacitor sets the pole frequency, fp,
shown in green. The pole frequency is optimal when it is aligned with the intersection of
the asymptotic voltage loop gain and the op-amp open-loop gain.
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Figure F.6: Technical noise comparisons of the I2V dii custom circuit (green) and a
ThorLabs PDA36A (red) for transimpedance settings of (a) 1 kΩ, (b) 10 kΩ, and (c) 100
kΩ. The PDA36A outperforms our custom circuit, because they use an AD829 which has
4 dB lower voltage noise than the AD8675[99].

proportional. The optimal op-amp would have vn/in = Rf to minimize noise. We chose to

use the AD8675 which has a GBW = 10 MHz, in = 0.3 pA/
√

Hz, and vn = 2.8 nV/
√

Hz,

which you may be surprised to note satisfies the condition vn/in ∼ 10 kΩ[98]. Another

nice feature of the AD8675 is that the 1/f voltage noise is below the white noise floor by

20 Hz.

Comparing the current to voltage converter noise performance to the ThorLabs PDA36A

which also uses a FDS100 photodiode, gives the results shown in Figure F.6.

The PDA36A has superior noise performance for lower Rf due to the choice of the

AD829 op-amp as the transimpedance amplifier. Our circuit performs better for tran-

simpedances of Rf > 10 kΩ since the current noise lower. The 1/f voltage noise of the

AD8675 compared to the AD829 can be seen clearly by zooming in on the lower frequen-

cies for Rf = 10 kΩ, as shown in Figure F.7
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Figure F.7: Technical noise comparisons of the I2V dii custom circuit (green) and a
ThorLabs PDA36A (red) for a transimpedance setting of 10 kΩ at lower frequencies. The
improved 1/f noise of the AD8675 is apparent in the data.
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Appendix G

Power Distribution

Convenient distribution of power has been an issue in the lab. The previous standard

was to have 4 mm ”banana-plugs”, plugged into a bus bar. This was a problem for a few

reasons, namely: noise pick-up, form-factor, reliability and safety. Banana plugs have a

standardized spacing of 0.75 in, which a for dual-sided circuit (+V, COM, -V) takes up

in excess of 1.5 and requires 3 holes to be drilled. While properly grounding the shielding

on the cable is possible with banana plugs, it has not often been done in our lab. Even

if the cable was properly shielded, the separation of the banana jacks at the connection

nodes would force a break in the shielding. Additionally, the old distribution system

was designed to have low impedance between nodes at all frequencies This means noisy

devices could add noise to all other devices on the line. Our ability to make cables in

the lab depended on reliable construction by undergraduate labor. Any undergraduate

(or graduate student) capable of reliably building cables should probably be doing other

more important and interesting tasks. Finally, no fuses existed in the system, so a bad

device could break itself, something else, or start a fire.

To correct for these factors, we have switched to a new power distribution systems.

We have chosen XLR and mini-XLR connectors to route power between nodes, since they

are common and designed to function in the audio frequency band where our electronics
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Figure G.1: Technical drawing for sourcing mini-XLR cable for power distribution.

typically operate. This appendix will discuss the distribution of power for the VME-

based Power Distribution Units (PDU), but the practices discussed can and should be

implemented when designing distribution systems for non-standard voltages. Most of our

electronics use ±15(12) V, ±5 V, and COM. We use 5-pin mini-XLR cables that we have

manufactured externally in 3, 6, and 10 ft lengths, see Figure G.1. The cables are color

coded in a pseudo-unique pattern to help identification of each cable end. The cable

shield is connected to common at one end of the cable. This end of cable plugs into the

distribution unit. The end is marked, and has a screw-on connector for identification.

The device end is plug-in (snap) connector.

The PDU unit is a 3U eurocard format with a VME backplane connector, and pulls

±15(12) V, +5 V, and COM from the VME backplane, see Figure G.2. The PDU has a

linear regulator for generating −5 V from the −12 V bus. The +5 V bus typically powers
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Figure G.2: (a) Image of a PDU card by itself, (b) and in a 3U subrack.

digital electronics. So if an analog +5 V source is desired on a device, it is recommended

that device use a linear regulator and generate +5 V from the +15 V line. The schematic

for the PDU is shown in Figure G.3. Each output line is individually fused with a PPTC

resettable fuse and filtered to prevent noise transfer between devices. A link to the PDU

design files can be found at reference [100].
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Figure G.3: Electrical schematic for one channel of the PDU card.
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Appendix H

MegaDAQ

Monitoring and stabilizing experimental and environmental parameters is important in

a sensitive experiment that must run continuously with minimal downtime. Examples

of parameters of interest are laser powers, loser lock states, background magnetic fields,

lab temperature, and humidity. Understanding and controlling drifts for all of these

parameters and more are important to maintaining the performance of the apparatus.

Commercial systems are typically either easy to setup but use a proprietary interface or

if they are general purpose require a significant amount of effort to integrate and have a

high per channel cost. Instead we have developed an Arduino Mega shield based around

a Texas Instruments AMC7182 12-bit 16 channel ADC and 12 channel DAC. The design

files for the device can be found at reference [101], and a C++ AVR/Arduino driver for the

ADC/DAC can be found at reference [102]. The MegaDAQ is designed to work with both

a standard Arduino Mega and the lab’s custom VMEMega which is a custom Ethernet

connected Arduino Mega that matches the VME 3U Eurocard form-factor. Images of the

MegaDAQ can be seen in Figure H.1.

The newest version of the MegaDAQ was recently completed where the form factor

was changed. The VMEMega host board pictured is from the previous form factor.

Normally the front of the two boards will be flush, and a front panel board will provide
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Figure H.1: The current generation MegaDAQ shield connected to the previous genera-
tion VMEMega host board.

a connectorized interface.

The ADCs are buffered by pseudo-differential op-amps which serves to isolate input

devices and prevent ground loops. Each ADC channel can be electronically switched

between ±2.5 V and 0-5 V operation range. The DACs are buffered as well, but only

operate in single ended mode with 0-12 V range.

With the VMEMega Analog data can be streamed to the Origin data collection server,

described in the next appendix. This is how the laser lock data was acquired in Figure

8.12. Some examples of data streaming can be found at reference [101] in the examples

folder.
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Appendix I

Origin Data Server

Storing, processing, and displaying large amounts of experimental and environmental data

is a common problem in a lab setting. Typically many implementation specific solutions

are developed over the course of a graduate student’s lifetime. While most graduate

students are fully capable of the above tasks, each person solution is typically different

an incompatible with solutions developed by other researchers. The Origin data server is

an attempt at standardizing the storage of data in a flexible and fast way, that allows for

quick and standardized access to all data types stored.

Origin is a simple monitoring server, based on ZeroMQ with options to send data

using a compact binary format or a simple JSON object. The data is stored by the server

in HDF5 files, MySQL databases, CSV files, or any other format that can match the

backend API, making it extremely portable and easy to use. The server was designed to

provide a common and uniform interface framework to facilitate the aggregation, storing,

and serving of data.

The distinguishing feature of Origin compared to other monitoring systems, such as

those designed to monitor large groups of servers, is that the data streams are dynamic

instead of monolithic. The server is passive and requires no specialized person to add a

data stream. A node registers itself with the server, through a predefined format, the
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type of data it will be sending. The server configures the backend to accept the new data

stream, then proceeds to store data when it is sent. The data can then be read by polling,

or subscribed to and the server will push new data to the subscribed device.

Besides just storing and retrieving data, alerts can be generated by the server for when

a data stream meets some condition. For example if a laser becomes unlocked, the atom

loading rate changes, or the temperature of the room is rising the user can be notified.

Distributed slow feedback systems can be also be implemented through the server, where

one device is recording the laser power, while a second device is subscribed to the data

stream and adjusts the RF power to an AOM to maintain the power level. Programs can

be developed to process heavy data loads live with some latency and then save the results

back to the same server. For example, one could implement an analysis that updates

atom signal threshold cuts for digitization by comparing the last N camera shots, and

then saves the results to the sever, which the experiment controller could be subscribed

to.

The system is simple to use and to expand in arbitrary ways as the complexity of

the experiment expands, and doesn’t require any upfront investment besides setting up

a server. The GitHub repository contains more information and should be referenced for

specifics [103].



181

Bibliography

1C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, “High-fidelity

quantum logic gates using trapped-ion hyperfine qubits”, Phys. Rev. Lett. 117, 060504

(2016).

2R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus,

A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P.

Oalley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and

J. M. Martinis, “Superconducting quantum circuits at the surface code threshold for

fault tolerance”, Nature 508, Letter, 500–503 (2014).

3K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L.

Isenhower, and M. Saffman, “Rydberg-blockade controlled-not gate and entanglement

in a two-dimensional array of neutral-atom qubits”, Phys. Rev. A 92, 022336 (2015).

4T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz, L. Isenhower, and M.

Saffman, “Randomized benchmarking of single-qubit gates in a 2d array of neutral-

atom qubits”, Phys. Rev. Lett. 114, 100503 (2015).

5A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T.

Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt,

S. Benjamin, and M. Müller, Assessing the progress of trapped-ion processors towards

fault-tolerant quantum computation, arXiv:1705.02771 [quant-ph], 2017.

http://dx.doi.org/10.1103/PhysRevLett.117.060504
http://dx.doi.org/10.1103/PhysRevLett.117.060504
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1103/PhysRevA.92.022336
http://dx.doi.org/10.1103/PhysRevLett.114.100503


182

6S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J.

Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-

term devices, arXiv:1608.00263 [quant-ph], 2016.

7T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien,

“Quantum computers”, Nature 464, 45–53 (2010).

8M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction

mechanisms on quantum computers, arXiv:1608.00263 [quant-ph], 2016.

9C. Chamberland, T. Jochym-O’Connor, and R. Laflamme, “Overhead analysis of uni-

versal concatenated quantum codes”, Phys. Rev. A 95, 022313 (2017).

10M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P.

Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic

ensembles”, Phys. Rev. Lett. 87, 037901 (2001).

11E. Brion, K. Mølmer, and M. Saffman, “Quantum computing with collective ensembles

of multilevel systems”, Phys. Rev. Lett. 99, 260501 (2007).

12A. V. Carpentier, Y. H. Fung, P. Sompet, A. J. Hilliard, T. G. Walker, and M. F.

Andersen, “Preparation of a single atom in an optical microtrap”, Laser Phys. Lett.

10, 125501 (2013).

13W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet,
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