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Abstract—The evolution of the theory of mode-locking over the
last three and a half decades is reviewed and some of the salient
experiments are discussed in the context of the theory. The paper
ends with two-cycle pulses of a mode-locked Ti : Sapphire laser.

Index Terms—Mode-locked lasers, optical pulses, pulsed lasers,
pulse generation, ultrafast optics.

I. INTRODUCTION

T HE ABSOLUTE bandwidth of the gain of optical lasers is
large, approaching an octave in the case of Ti : Sapphire.

Thus, lasers can amplify broad-band radiation. If the radiation
is in the form of pulses, the pulses can be very short.

The word mode-locking describes the locking of multiple
axial modes in a laser cavity. By enforcing coherence between
the phases of different modes, pulsed radiation can be produced.
Mode-locking is a resonant phenomenon. By a relatively weak
modulation synchronous with the roundtrip time of radiation
circulating in the laser, a pulse is initiated and can be made
shorter on every pass through the resonator. The shortening
process continues unabated, until the pulse becomes so short
and its spectrum so wide that pulse lengthening mechanisms
or spectrum narrowing processes spring into action, such as
finite bandwidth of the gain. The history of laser mode-locking
is a progression of new and better ways to generate shorter and
shorter pulses, and of improvements in the understanding of
the mode-locking process.

The first indications of mode-locking appear in the work of
Gürs and Müller [1], [2] on ruby lasers, and Statz and Tang [3]
on He–Ne lasers. The first papers clearly identifying the mech-
anism were written in 1964 by DiDomenico [4], Hargroveet
al. [5], and Yariv [6]. Hargroveet al. achieved mode-locking
by internal loss modulation inside the resonator. This is the
case of “active” mode-locking. Mocker and Collins [7] showed
that the saturable dye used in ruby lasers to-switch the laser
could also be used to mode-lock.-switching is a process in
which the laser is caused to emit pulses that are many roundtrips
in duration. The saturable absorber is bleached by the radia-
tion in the resonator. The emission of radiation stops when the
gain medium is depleted, and the process starts all over again.
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Mocker and Collins observed that the-switched pulse broke
up into a train of very short pulses separated by the roundtrip
time. The train carried the same energy as the-switched pulse
and hence the pulses were of much greater peak intensity than
the pulses produced by-switching alone. This was the first
example of passive mode-locking. For several years, techniques
were developed for measurement of these pulses and for their
use to probe nonlinear response of optical media. The measure-
ment accuracy was impaired by the somewhat unpredictable na-
ture of the transient mode-locking. This drawback was over-
come when Ippen, Shank, and Dienes [8] generated the first
CW saturable absorber mode-locking using a saturable dye in
a dye laser. Shortly thereafter this led to production of pulses
of sub-picosecond duration [9]. The reproducible character of
these pulses improved the accuracy of pump-probe measure-
ments by four orders of magnitude. The work on dye lasers
continued unabated for the next decade producing shorter and
shorter pulses [10]–[12]. Ultimately, a record 6-fs pulse dura-
tion was achieved by Forket al.using pulse compression ex-
ternal to the cavity [13]. The pulse compression technique uses
the Kerr nonlinearity of an optical medium. The pulses propa-
gating through the medium experience nonlinear phase shifts
that lead to spectral broadening. The spectral broadening re-
sults in a chirp, a spread of frequencies. The different frequency
components are superimposed by propagation in a dispersive
medium, or by reflection from a grating pair.

The analytic theory of active mode-locking was firmly estab-
lished in a classic paper by Siegman and Kuizenga [14]. The
process was studied in the frequency domain with explicit at-
tention paid to the injection locking of the axial modes by a
loss modulator. The predicted pulse shape was Gaussian. This
fact was confirmed by experiment. The analytic theory of pas-
sive mode-locking had to await the advent of CW mode-locking,
since transient mode-locking is too complicated to yield to an
analytic approach. The author became interested in the problem
upon hearing of the successful CW mode-locking of dye lasers
[8]. How the pulses were formed was not clear in this case,
since it was known from previous work [15] that the relaxation
time of the absorber was much longer than the pulse generated
in the laser. This puzzle intrigued the author and he set out to
develop an analytic theory of saturable absorber mode-locking
on one of his sabbaticals at the Bell Laboratories. Ignoring, at
first, this puzzle, he developed an analytic theory of passive
mode-locking with a fast saturable absorber, an absorber with
a relaxation time short compared with the pulsewidth [16]. This
required a reformulation of the mode-locking theory of Siegman
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and Kuizenga [14] in the time domain. At about the same time
New [17] explained by computer simulation the operation of the
mode-locked dye laser: The laser shaped its pulse by the leading
edge of the absorber saturation, which opens a window of net
gain. The window is closed by gain saturation. These two pro-
cesses produce a window of net loss decrease, just like a fast
saturable absorber. The analytic theory developed by the author
predicted hyperbolic secant temporal envelopes of the electro-
magnetic field. He approached with this information Ippen and
Shank who were making pulse shape measurements at the time,
and the prediction was confirmed by experiments [18].

In the meantime, the theory of mode-locking with a fast sat-
urable absorber lay fallow, since nature does not provide us
with an absorber with a relaxation time much shorter than a
picosecond. Then came Mollenauer’s soliton laser [19]. The
soliton laser consisted of two resonators, one active the other
passive and containing a fiber, coupled via a semitransparent
mirror to the laser resonator. The two resonators were feed-
back stabilized to within a fraction of a wavelength. The op-
eration of this laser was explained afterwards as an interfer-
ence phenomenon between the pulses circulating in the two sub-
resonators and interfering at the semitransparent mirror [20].
Through proper phasing a net pulse shaping is produced analo-
gous to that of a fast saturable absorber. The process was dubbed
additive pulse mode-locking (APM) [21]. The principle was
generalized to fiber ring lasers in which the APM action is pro-
duced by a birefringent element in the resonator. Via polariza-
tion controllers the pulse is split into two co-propagating ver-
sions in the fiber. The interference of the two polarizations at
the output polarizer leads to effective fast-saturable-absorber ac-
tion.

Then came the surprising result of Sibbett’s group at the Uni-
versity of St. Andrews [22] who generated very short pulses in
a single resonator. This work was pursued at several laborato-
ries [23]–[29] and the mode-locking was recognized as caused
by what is now called Kerr–lens mode-locking (KLM). The ef-
fect of a fast saturable absorber is simulated by Kerr focusing:
the high intensity part of the beam is focused by the Kerr–ef-
fect, whereas the low intensity parts remain unfocused. If such
a beam is passed through an aperture, the low intensity parts are
attenuated, thereby shortening the pulse.

Pulses can be shaped by means other than saturable absorber
action. A pulse propagating in a Kerr–medium with anoma-
lous dispersion (such as in a fiber in the wavelength regime of

m) can form into a soliton. This effect, by itself, is
capable of producing pulses in a Hamiltonian (loss-free) way.
The Kerr–nonlinearity is balanced by dispersion. In the pres-
ence of gain, the buildup of noise in the intervals between the
pulses must be prevented by (effective) saturable absorber ac-
tion. However, the pulse shaping function may be performed by
soliton-shaping alone. Fiber lasers have been mode-locked in
this way [30].

There is another variant of this pulse shaping by the Kerr–ef-
fect and dispersion, in a way analogous to dispersion managed
soliton propagation [31]. The dispersion in the ring may be made
to vary from normal to anomalous by proper splicing of fiber
segments. The pulse inside the resonator stretches and com-
presses [32]. The net dispersion may be zero, yet soliton-like
pulse shaping is still possible [31]. The reason for this is the

Fig. 1. Pulsewidths of different laser systems achieved year by year.

fiber nonlinearity that causes the pulse spectrum to be narrower
in the segment with normal dispersion than in the segment with
anomalous dispersion. Thus, on the average, the pulse experi-
ences anomalous dispersion which balances the Kerr–effect.

The KLM mode-locking mechanism is a very effective
way of generating short powerful mode-locked pulses from
Ti : Sapphire and was carried on and perfected by groups at
the University of Washington [33]–[35], Vienna [36]–[39],
MIT [40]–[43], [78], and ETH [44]–[48]. The Vienna group
introduced chirped mirrors for dispersion compensation,
the ETH group developed the double chirped mirror design
and introduced saturable semiconductor mirrors to ensure
self-starting of mode-locking.

The recent record of about 5 fs [49], [50], the shortest pulses
ever achieved directly from an oscillator, is explained by the
dispersion managed soliton model [51]. The Ti : Sapphire
gain crystal has positive dispersion, the mirrors are carefully
designed to balance this dispersion. When the pulses are
extremely short, they are stretched and compressed by more
than a factor of two in width as they propagate through the
resonator.

Fig. 1 shows the history of mode-locking in terms of the
years in which shorter and shorter pulses were achieved.
Distinct branches pertaining to different laser types are shown.
The earliest successful generation of sub-picosecond pulses
was achieved with dye-lasers. Then came the mode-locking of
semiconductor lasers. Finally, the shortest pulses were gener-
ated with solid state systems, in particular with Ti : Sapphire.

This paper is a brief summary of the history of mode-locking,
from its beginning in the 1960s. The literature is enormous. In
the excellent review chapter of early work written in 1974 [52]
already over 400 references are cited. Today, a complete bibli-
ography would run into many thousands of references. Instead



HAUS: MODE-LOCKING OF LASERS 1175

of providing such a list, I believe that the reader will be better
served if presented by a concise review of the main theoretical
concepts and equations that describe mode-locking. The theo-
retical work on mode-locking extends over more than 35 years.
Notation has changed with the times. In this paper, we shall
describe the most important models of mode-locking in one
common notation. We start in Section II with a description of ac-
tive mode-locking in the frequency domain and the time domain.
We develop the master equation and find the Gaussian pulse so-
lutions. In Section III we present the master equation for fast
saturable absorber mode-locking and find its hyperbolic secant
solutions. In Section IV we briefly review mode-locking with
a slow saturable absorber. Section V looks at APM and KLM.
Section VI introduces the Kerr–effect and group velocity dis-
persion into the master equation. Section VII treats the stretched
pulse fiber laser. In Section VIII we look at the latest results in
ultrashort mode-locked pulse generation.

II. A CTIVE MODE-LOCKING IN THE FREQUENCY AND TIME

DOMAINS

An optical Fabry–Pérot resonator formed of two mirrors has
axial modes separated in frequency by , where

is the roundtrip time. A laser is formed by introducing a
gain medium. Generally, several axial modes will be lasing if the
gain level is above threshold. Denote the frequency of the central
mode by . The laser is mode-locked by an amplitude modu-
lator placed near one of the mirrors (see Fig. 2). A cosinusoidal
modulation of the central mode at the frequency
produces sidebands at . These injection lock the ad-
jacent modes, which in turn lock their neighbors. Denote the
amplitude of the axial mode of frequency by .
The amplitude changes within each pass through the amplifier
of loss and peak gain , where ,

(1)

where is the modulation. This expression can be transformed
into a standard operator by introducing three approximations.

1) The frequency dependent gain can be expanded to second
order in .

2) The discrete frequency spectrum with Fourier compo-
nents at is replaced by a continuum spectrum, a
function of .

3) The sum can be replaced
by a second derivative with respect to frequency if the
spectrum is very dense (usually thousands of modes are
involved in mode-locking).

Equation (1) becomes

(2)

Fig. 2. Schematic of actively mode-locked laser, the spectrum, and the
injections signal produced by modulator.

where is the modulation frequency. In the steady-
state, the change of the pulse in one roundtrip is zero. Hence, the
mode-locked pulse must be a solution of the differential equa-
tion

(3)

The solution is a Gaussian pulse

(4)

where

(5)

This is the Kuizenga–Siegman formula [14] for the pulsewidth,
which is proportional to the inverse of the geometric mean of the
gain bandwidth and the modulation frequency. The eigenvalue
of the equation gives an expression for the net gain

(6)

The gain is greater than the loss. This is permissible, and does
not cause instabilities, since the modulator increases the loss in
the pulse wings.

Equation (2) can be generalized to include transient buildup
or decay of the excitation. The change per pass need not be zero.
If nonzero, a difference equation results for , the spec-
trum on the th pass. If the evolution is slow, the difference
equation can be replaced by a differential equation in terms of
the long term time variable . Even though the pulse is charac-
terized in terms of its spectrum, slow variation of the spectrum
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is legitimately described in terms of a time varying spectrum.
One obtains the two-dimensional differential equation

(7)

The transient behavior is easily characterized by an expansion
of the excitation in terms of Hermite–Gaussians. One may write

(8)

One obtains total differential equations for the amplitudes

(9)

Higher order excitations all experience net loss. The Her-
mite–Gaussians form a complete set of functions. Therefore the
analysis is complete. It provides a clear picture of the behavior
of pulse perturbations, Hermite–Gaussians of order . The
dynamics of amplitude perturbations of the pulse itself repre-
sented by the term of the Hermite–Gaussian expansion
require separate study. Such a perturbation, when in phase with
the main pulse, lowers the gain through gain saturation (gen-
erally with a relaxation time much longer than the pulse). This
provides net loss to the perturbation which then decays. Con-
versely, a perturbation in antiphase raises the gain and thus the
original pulse amplitude is restored. This interplay between gain
and resonator response can also lead to damped relaxation oscil-
lations of the pulse-train envelope, a phenomenon we shall not
discuss any further. A perturbation in quadrature with
the pulse does not affect the energy to first order and does not
affect the gain. Its decay rate is zero. Hence it is not stabilized.
Amplified spontaneous emission noise kicks the phase back and
forth. The phase experiences a random walk.

The description of mode-locking in terms of a pulse spectrum
that evolves with time can be transformed into a description of
a pulse with a temporal envelope that evolves on a time scale
much longer than the pulsewidth. This is accomplished by a
Fourier–transform with the Fourier–transform pairs

(10)

(11)

The pulse evolution equation becomes

(12)

The same master equation could have been obtained by
starting with a pulse-shape expressed in time, modulated
by the modulation function and expanding the
modulation function to second order in. The effect of the
gain filtering is expressed by a second derivative in time.

Fig. 3. Actively mode-locked pulse in the time domain and the time
dependence of net gain.

The evolution of the pulse is written in terms of a long-term
time variable . Clearly, the eigenfunctions of the right hand
side of (12) are Hermite–Gaussians, the consequence of the
fact that the Fourier transforms of Hermite–Gaussians are
themselves Hermite–Gaussians. The pulse shape of steady state
mode-locking is . In all other respects, the
analysis carries through in the same way as with the Fourier
transform. Fig. 3 shows the active mode-locking process in the
time domain. The modulation provides a time dependent loss.
Whenever the loss dips below the gain level, the curvature of
the envelope is negative. The transition beween net gain and
net loss marks the point of inversion on the pulse envelope.

Active modelocking does not lead to ultrashort pulses, be-
cause the frequency of modulation cannot be raised arbitrarily.
Harmonic mode-locking allows for modulation frequencies at
a harmonic of . When this is done the shortening of the
pulse within each pass can be enhanced. However, if the en-
ergy of the individual pulses is to be kept high only one pulse
must be allowed to circulate in the resonator. This can be accom-
plished through the use of step-recovery diodes for the mod-
ulation source. However, the bandwidth of optical modulators
is limited and thus modulation with ultrashort electrical pulses
runs into difficulties. Modulation by a passive, saturable ab-
sorber is much more effective in pulse shaping. Since the pulse
itself produces the shape of the modulation function, consider-
ably tighter modulation becomes feasible. Each time the pulse
passes through the resonator it is multiplied by a time function.
If the process is treated in the frequency domain, the multiplica-
tion in the time domain becomes convolution in the frequency
domain. A master equation results that involves convolution in-
tegrals. For this reason, a description of passive mode-locking
is best carried out in the time domain.

III. PASSIVE FAST SATURABLE ABSORBERMODE-LOCKING

Passive mode-locking with a fast saturable absorber is much
more easily described than mode-locking with a slow absorber.
Analytic solutions are obtained with a very simple approxima-
tion. Even though no practical passively mode-locked laser ex-
isted that fitted the model of a fast saturable absorber at the time
I published this theory [16], it is a coincidence that the more re-
cent schemes of passive mode-locking are well described by an
extension of this model, as we shall see later on.

In passive mode-locking, the modulator is replaced by a sat-
urable absorber as shown in Fig. 4. The (loss) modulation of
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Fig. 4. Schematic of laser passively mode-locked with fast saturable absorber
and the time dependence of pulse, and net gain.

the saturable absorber in transmission through the absorber
through the saturable absorber is

(13)

where
unsaturated loss;
dependent intensity;
saturation intensity of the absorber.

If the saturation is relatively weak, expression (13) can be ex-
panded to give

(14)

The intensity multiplied by the effective area of the mode
gives the power in the mode. We normalize the mode amplitude
so that power. Then the transmission can be written

(15)

nbwhere is the self amplitude modulation (SAM) coefficient.
The master equation of passive mode-locking with a fast sat-
urable absorber is obtained by introducing the saturable loss into
(12) and omitting the active modulation term. The unsaturated
loss can be incorporated into the loss coefficient with the re-
sult

(16)

The solution is a simple hyperbolic secant

(17)

with

(18)

and

(19)

Fig. 5. Time dependent loss.

Equation (18) for the square of the inverse pulsewidth is related
to that of active mode-locking, (5). Indeed, in (5) the fourth
power of the inverse pulsewidth is proportional to the modu-
lation strength , the curvature of the modulation as a function
of time and the square of the filter bandwidth. In the case of
passive mode-locking, the product of modulation and curvature
is equal to . Thus (18) and (5) are indeed related. The
comparison also explains why passive mode-locking can result
in much shorter pulsewidths for the same filter bandwidth. As
the pulse gets shorter, the curvature of the modulation increases
as , whereas it remains unchanged for active mode-locking.
The pulse shape and the net temporal gain are shown in Fig. 5.
The net gain is negative preceding and following the pulse. At
the pulse peak, the gain is positive due to the bleaching of the
saturable absorber. Another interesting feature emerges—a hy-
perbolic secant has exponential tails. Such tails are mandatory
in passive mode-locking; the system behaves linearly in the tails
since the intensity is small. The second order differential equa-
tion dictates exponential solutions for any bounded pulse.

The solution (16) is not stable unless gain saturation is explic-
itly included. This gain saturation can be cumulative, so that one
may still make the assumption that the gain is approximately
constant during the passage of one pulse. The solution is also
stabilized if the full saturation behavior (13) is heeded, but then
no closed form solutions have been found.

IV. M ODE-LOCKING WITH A SLOW SATURABLE ABSORBER

The theory of the fast saturable absorber [16] was worked out
by the author in preparation for the analysis of the dye laser. The
model for the slow saturable absorber has to take into account
the change of gain in the passage of one pulse [17], [53]. The
relaxation equation of the gain, in the limit of a pulse short com-
pared with its relaxation time, can be approximated by

(20)
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The coefficient is the saturation energy of the gain. Inte-
gration of the equation gives

(21)

where is the initial gain before the arrival of the pulse. A sim-
ilar equation holds for the loss of the saturable absorber whose
response (loss) is represented by

(22)

where is the saturation energy of the saturable absorber.
If the background loss is denoted by, the master equation of
mode-locking becomes

(23)

Here we have expressed the filtering action as produced by
a separate fixed filter, rather than by the finite bandwith of the
gain (which varies with time) so as to obtain analytic solutions
of the master equation. An analytic solution to this integro-dif-
ferential equation can be obtained with one approximation: the
exponentials are expanded to second order. This is legitimate
if the population depletions of the gain and saturable absorber
media are not excessive. Consider one of these expansions

(24)

Suppose the pulse is a symmetric function of time. Then the first
power of the integral gives an antisymmetric function of time,
its square is symmetric. An antisymmetric function acting on
the pulse causes a displacement. Hence, the steady state
solution does not yield zero for the change per pass, the deriva-
tive must be equated to a time shift of the
pulse. When this is done one can confirm easily that

is a solution of (24) with the constraints on the
coefficients:

(25)

(26)

(27)

These equations have important implications. Consider first the
equation for the inverse pulsewidth, (27). In order to get a real
solution, the right hand side has to be positive. This implies that

. The saturable absorber must saturate more
strongly than the gain medium in order to open a net window of
gain (see Fig. 5). This was accomplished in a dye laser system
by stronger focusing into the saturable absorber-dye jet than into
the gain-dye jet. Equation (25) makes a statement about the net
gain before passage of the pulse. The net gain before passage of
the pulse is

(28)

This gain is negative since the effect of the saturable absorber
is larger than that of the gain. Since the pulse has the same ex-
ponential tail after passage as before, one concludes that the net
gain after passage of the pulse is the same as before passage and
thus also negative. The pulse is stable against noise buildup both
in its front and its back.

The preceding analysis was carried out while the author
spent a sabbatical at Bell Laboratories in 1974–1975. The
published paper contains the derivation reproduced here, with
a new notation that unifies the mode-locking work performed
by the author and his colleagues over the next two decades.
While working at the Bell Laboratories, the author concluded
that integrated optics was held up in its development because
no compact source of pulses for digital communications
existed at the time. The processes in semiconductor lasers
are analogous to those of dye lasers. A p-n junction above
threshold produces gain with relaxation times of the order of
100 ps. Below threshold it provides saturable absorption with
roughly the same relaxation time. Therefore, one could transfer
the principle of mode-locking of dye-lasers to semiconductor
lasers consisting of two junctions, driven by currents above
and below threshold. He started mode-locking experiments in
his group at MIT which succeeded in generating an actively
mode-locked pulse train of 18 ps pulses [54]. Ippenet al.
at Bell Laboratories subsequently achieved the first passive
modelocking of a semiconductor laser [55]. Integration of the
saturable absorber section with the lasing section is now a well
established technology.

V. ADDITIVE PULSE- AND KERR–LENSMODE-LOCKING

Artificial fast saturable absorbers are produced by coherent
superposition at a beam splitter or polarizer of two versions
of the same pulse, one version of which is passed through a
Kerr medium. The earliest realization accomplished this with
two coupled resonators [20] and prompted the description APM
[21]. Fig. 6 shows a single-armed realization with polarization
transformers and polarizers. Linearly polarized light is trans-
formed into elliptically polarized light which is then passed
through an isotropic Kerr–medium. Elliptic polarization is ro-
tated in the Kerr–medium by an intensity dependent angle. If
the output light is again linearly polarized by an analyzer, the
throughput of the system is intensity dependent. An artificial
saturable absorber has been realized. This kind of APM is par-
ticularly convenient for fiber lasers, since rabbit-ear polarization
transformers and polarizers are all fiber-compatible.
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Fig. 6. Construction of saturable absorber using rotation of elliptic
polarization in isotropic medium.

The rotation of elliptical polarization in an isotropic Kerr
medium can be understood best by writing the Kerr–polariza-
tion in terms of circular polarization components. If the medium
responds instantaneously, the polarization is [56]

(29)

The isotropic character of the medium dictates that a term of the
form does not appear in the response. Indeed, if such a
term appeared, the response would be sensitive to the relative
phase between the electric field and . But the relative
phase determines the orientation of the-field in the special
case of a linear polarization with and the Kerr
response has to be independent of the polarization orientation
in an isotropic medium. The factor of two in the cross phase
modulation is a consequence of the instantaneous response.

It is clear that linear polarization and circular polarization ac-
quire a simple phase shift due to the Kerr–polarization. Elliptic
polarization is rotated. This rotation is exploited in the construc-
tion of an artificial saturable absorber with the use of an ana-
lyzer.

In lasers with free-space propagation within the Fabry–Pérot
resonator, the Kerr–effect can be used to produce intensity de-
pendent focussing. This way of producing an artificial fast sat-
urable absorber is called KLM. As mentioned earlier, KLM
was first accomplished by W. Sibbett and his group [22]. The
Kerr–effect imposes a spatial intensity dependent phase pro-
file upon the beam propagating through the gain crystal (see
Fig. 7). This phase profile leads to intensity dependent beam
diameter variations in a Fabry–Pérot resonator with spherical
mirror(s) that has been designed to operate close to its insta-
bility regime. If the beam diameter is decreased at high intensi-
ties within a spatially varying gain profile, as the one produced
from a Gaussian pump-beam, the high intensities experience
higher gain. This enhancement of gain with increasing intensity
is equivalent to saturable absorber action. The proper design of
the resonator for optimization of KLM has received a great deal
of attention [57].

VI. M ODE-LOCKING IN PRESENCE OFGROUPVELOCITY

DISPERSION ANDKERR–EFFECT

As shorter and shorter pulses were generated by dye-lasers, it
was realized that the group velocity dispersion (GVD) and the
self-phase-modulation (SPM) caused by the Kerr–effect of the

Fig. 7. Artificial saturable absorber realized with Kerr–lens mode-locking.

laser elements could not be ignored. Group velocity dispersion
was controlled by the insertion of prism pairs into the laser res-
onator [58]. Since these new effects become particularly impor-
tant with ultrashort pulse generation in solid state laser, using
APM and KLM, and since these operating schemes are equiva-
lent to a fast saturable absorber, we discuss here only the modi-
fied master equation for fast saturable absorber modelocking

(30)

Here, is the group velocity dispersion parameter and the fil-
tering action is represented by . In a medium
of length , with a propagation constant whose second deriva-
tive is the parameter is . The Kerr–coefficient
is , where is the carrier wavelength,
is the nonlinear index in cm and is the effective mode
cross-sectional area in cm. The gain is taken as time indepen-
dent as applicable for a gain medium with a long relaxation time.
The bandwidth is assumed to be limited by a filter of bandwidth

. This equation has a simple steady state solution [59]

(31)

The presence of group velocity dispersion raises the possibility
of unequal phase and group velocities. When this happens,
the carrier phase may slip with respect to the envelope in
one roundtrip time. This means that .
Introducing this ansatz into (31) and balancing terms one
obtains two complex equations.

(32)

(33)

where is the energy in the pulse, . We investi-
gate how the pulse parameters vary as one adjusts the group ve-
locity dispersion by a pair of prisms, or the SAM coefficient by
changes in the APM or KLM set-up. In such a case the energy

is fixed by the pump level. By taking the real and imaginary
parts of (32) and (33) one obtains four real equations for the four
parameters: 1) net gain; 2) the phase shift; 3) the pulsewidth; and
4) the chirp parameter.

The solutions of these equations give an overview of all im-
portant effects of system parameters on mode-locking. We in-
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(a) (b)

(c) (d)

Fig. 8. (a) Pulsewidth. (b) Chirp parameter. (c) Net gain. (d) Phase shift per pass.

vestigate the thought experiment in which the dispersion in the
resonator is varied by a prism pair [55], with all other param-
eters fixed, for several values of the SPM parameter. For all
solid state lasers, the relaxation time of the gain is much longer
than the pulse duration. For fixed pumping, the energy of the
pulses remains constant. We use the normalized parameters

(34)

where is a normalizing pulsewidth. This pulsewidth is chosen
conveniently to be the pulsewidth for , the simple
fast saturable absorber mode-locking model. With this choice,

. Separating (32) and (33) into real and imaginary
parts, one obtains the set of four equations

(35)

(36)

(37)

(38)

From (37) and (38) one obtains a relation between the chirp
parameter and the pulsewidth:

(39)

Substituting this expression into (37), we obtain a quadratic
equation for the pulsewidth with the (positive) solution:

(40)

with

(41)

The pulsewidth as a function of dispersion is plotted in
Fig. 8(a). For nonzero SPM, the shortest pulses are obtained
with negative dispersion. The pulses are always longer with
positive dispersion. The chirp parameter is plotted in Fig. 8(b).
A combination of negative dispersion with finite SPM can
find a zero chirp solution. For a small SAM coefficient, weak
filtering, and negative values of one finds that the pulse is
chirp-free. In this case the pulse is soliton-like, a solution of the
nonlinear Schrödinger equation, an approximation to (30)

(42)

with the chirp-free hyperbolic secant “soliton” solution:

(43)
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The pulse is continuously phase shifted by the Kerr–effect. The
amplitude and pulsewidth obey the “area theorem”

(44)

A pulse forms via the balance of GVD and SPM. This behavior
is characteristic of fiber ring lasers with uniform dispersion

. The pulse in the laser may be described as a soliton
weakly perturbed by SAM and filtering. The pulse shaping
may be attributed to the soliton-process. The SAM action
is required solely for stabilization of the pulse against noise
buildup in the intervals between the pulses. The filtering selects
the pulsewidth by causing a monotonic increase in loss with
decreasing pulsewidth. Fig. 8(c) plots the parameter
which has to be negative if the pulse train is to be stable against
buildup of noise between pulses. We see that excessive SPM
can lead to instability near zero dispersion and for positive
dispersion.

Fig. 8(d) plots the phase shift per pass. If a phase is added
upon each pass, the phase increases linearly in time, which cor-
responds to a frequency shift. Fluctuations ofthat may be in-
duced by noise cause the spectral lines of the modes to acquire
a finite line width. Further, the phase shift per pass causes a
change in the phase velocity. The phase velocity has dropped out
of the analysis when we resorted to the slowly varying envelope
approximation suppressing the carrier. The carrier

does not appear explicitly. This carrier is multiplied by the
envelope function. The carrier slips underneath the envelope if

(45)

where is an integer. Normally one does not care when such a
slip occurs, unless the pulse is only a few cycles long. Then, such
a slip leads to a change of pulse shape from pulse to pulse and
other undesirable effects to be explained later. It should be noted
that the inverse group velocity is affected by the Kerr–effect and
has an energy dependent contribution.

There is another mechanism that is very important in limiting
the pulsewidth shortening and these are the parasitic sidebands
first described and explained by Kelly [60]. The soliton is peri-
odically perturbed by the gain, loss, filtering and SAM action. In
the process it radiates (generates continuum). If the continuum
generated by the soliton is phase matched from pulse to pulse, its
energy can build up and drain the soliton. Fig. 9 shows a phase
matching diagram in the frequency domain. A spectral com-
ponent of the continuum at a frequency deviationfrom the
carrier frequency is phase delayed in one pass through the res-
onator by , phase advanced if the dispersion is anomalous

. The soliton pulse and spectrum experience the phase
delay . The excitation of the continuum is matched if
the sum of delay and advance is equal to a multiple of. When
this happens, sidebands appear in the pulse spectrum. One such
experimental trace is shown in Fig. 10 [30].

The pulse can also be made chirp-free by a proper balance
between the SAM coefficient and the filtering action. The
pulsewidth increases rapidly with increasing positive values of

. However, the pulse with the broadest bandwidth is found for
slightly positive . When compressed by grating pairs external
to the laser, the shortest pulses are generated.

Fig. 9. Phase matching of parasitic sidebands.

Fig. 10. Spectra of soliton laser and of stretched pulse laser.

VII. T HE STRETCHEDPULSE-FIBER LASER

Kohichi Tamura, while a graduate student at MIT, was
working on fiber ring lasers. When he introduced a novel
erbium doped fiber into the ring laser he observed behavior
radically different from his first realization of the APM
mode-locked fiber ring laser. It turned out that the new erbium
doped fiber had positive dispersion. The dispersion around the
ring was almost balanced between the positively dispersive
erbium fiber and negatively dispersive passive fiber. The pulse
circulating in the ring was stretching and compressing by as
much as a factor of 20 in one roundtrip. One consequence of
this behavior was a dramatic decrease of the nonlinearity and
thus increased stability against the Kerr–nonlinearity induced
instabilities. No Kelly–sidebands were observed (see Fig. 10).
The energy of the output pulses could be increased 100 fold.
The minimum pulsewidth was 63 fs, with a bandwidth broader
than the erbium gain bandwidth [61]. Fig. 10 shows the
spectrum of stretched pulse laser.

A master equation was developed for the operation of the
stretched pulse laser [62]. Note had to be taken of the fact that
the Kerr–phase shift is produced by a pulse of varying amplitude
and width as it circulates around the ring. The Kerr–phase shift
for a pulse of constant width, had to be replaced by a phase
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profile that mimics the average shape of the pulse, weighted by
its intensity. The SPM action of (6.1) was replaced.

(46)

is the pulse amplitude at the position of minimum width.
The Kerr–phase profile is expanded to second order in. The
coefficients and are evaluated variationally. The SAM ac-
tion is similarly expanded. Finally, the dispersion parameter is
replaced by the effective dispersion around the ring, . The
master equation becomes

(47)

This equation has Gaussian–pulse solutions. Since the ap-
proximations made in arriving at (47) are not applicable to
the wings of the pulse, the wings are not Gaussian in fact. A
Gaussian–pulse profile in the center of the pulse Fourier–trans-
forms into Gaussian–spectral wings, which decay faster than
the wings of a hyperbolic secant square pulse. This helps to
suppress the parasitic sidebands.

It should be mentioned that the master equation (46) is a
patchwork, it is not an ordinary partial differential equation. The
coefficients in the equation depend on the pulse solution. They
may be estimated before a solution is found and in a process
of successive improved estimates of the coefficients an accurate
solution is obtained. The virtue of the equation is that it predicts
rather well the general shape of the mode-locked pulse.

VIII. U LTRASHORT PULSE GENERATION

We have mentioned that in a fiber ring soliton laser the main
pulse shaping mechanism is due to the balance of GVD and
SPM. For this to occur, the dispersion must be anomalous. The
master equation of the stretched pulse laser (47) also permits
steady state solutions without filtering and SAM, as long as

. These are so called dispersion managed solitons. One
may consider this case to be soliton-like, except that the pulse
changes its shape periodically in each segment of the resonator
of opposite dispersion. Again, one may look at this operation
as a perturbed dispersion managed soliton, the SAM and the
filtering being small perturbations that stabilize against noise
buildup and set the pulsewidth, respectively.

There is one more interesting property of the stretched pulse
operation. Dispersion managed solitons may form even when
the net dispersion as seen by a linearly propagating pulse
is zero or slightly positive. This is a surprising result which was
discovered in the study of dispersion managed soliton propaga-
tion [31]. It turns out that the stretched pulse changes its spec-
trum in its propagation through the two segments of fiber of
opposite dispersion. The spectrum in the segment with normal
(positive) dispersion is narrower than in the segment of anoma-
lous (negative) dispersion. The pulse sees an effective net nega-
tive dispersion, provided that the positive is not too large.
In (46), is to be replaced by which can be computed

Fig. 11. Intensity profile and the spectrum of dispersion managed soliton at
zero net dispersion evaluated at the center of negatively dispersive segments.

variationally. Thus, dispersion managed soliton-like solutions
can exist even when is zero. However, they exist only if
the stretching factor is of the order of two or higher.

When the dispersion managed soliton equation (with no
SAM and no filtering) is numerically integrated, solutions are
found that resemble the Gaussian–pulses down to about10
dB from the peak, but then show rather complicated structure
(see Fig. 11). The remarkable property of these solutions is
that they do not radiate (generate continuum) even though they
propagate in a medium with abrupt dispersion changes. This
prompted the author to ask the question whether one could
view dispersion managed solitons as nonlinear Bloch–waves in
a periodic structure, namely waves that reproduce themselves
from period to period, and only acquire a net phase shift in
the process. It was shown that the Kerr–effect produces a
self-consistent scattering potential that makes this kind of
solution possible [63].

This brings us to the discussion of the generation of ultrashort
pulses. The world record at the moment is that of a Ti : Sapphire
laser generating pulses that contain only two cycles [47], [49],
[64]. The system is a standard KLM mode-locked system with
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Fig. 12. Laser resonator with dispersion compensating mirrors. The shaded
mirrors are double-chriped Bragg–reflectors.

Fig. 13. Reflectivity and group delay of doubly chirped mirror [49].

Fig. 14. Autocorrelation of two-cycle pulse.

dispersion compensating mirrors and a prism pair for compen-
sation of higher order dispersion (see Fig. 12). The mirrors are
carefully designed to be broad-band and to eliminate as much as
possible the fringes that are produced by the Fabry–Pérot reso-
nance between the air-mirror interface and the Bragg–reflector.
This is accomplished by a double chirped mirror design [44].
The calculated and measured reflectivity and the group disper-
sion delay (GDD) are shown in Fig. 13. Fig. 14 shows the mea-
sured (interferometric) autocorrelation of the pulse, the auto-
correlation inferred from the spectrum under the assumption of
constant phase, and a fit assuming a sinc function pulse ampli-
tude [49]. The assumption of a sinc function is an approxima-
tion to a pulse that is band-limited by a mirror reflectivity that

is a rectangular function of frequency in a resonator with per-
fectly balanced GVD. Of course, the situation is not that simple.
A better model is the stretched pulse, or dispersion managed,
soliton propagation.

IX. CONCLUSION

The advances in mode-locking in the last three and a half
decades have been truly remarkable as shown by the histor-
ical graph of Fig. 1. Mode-locked Ti : Sapphire, Nd : YAG, er-
bium-doped fiber lasers and others have been commercialized.
The question then arises whether further advances in mode-
locked sources are to be expected. The answer is yes. Wave-
length regimes will have to be covered in which 10-fs pulses
have not been generated as yet. Cr : Forsterite lasers are an ex-
ample. It is likely that the pulsewidth in these lasers is limited by
Raman–excitations in the forsterite crystal that cause parasitic
loss [65]. The quest for ultrashort pulses will continue since it
still holds great promise. Pulses of two cycles duration spread
very rapidly when propagating in any medium, including air.
Yet, this does not detract from their usefulness as broad-band
sources of spectrum. The demonstration of cellular resolution
achieved in optical coherence tomography using the two-cycle
Ti : Sapphire laser is a case in point [66]. In this application it
is the width of the spectrum of the ultrashort pulses that is of
importance.

The spectrum of a mode-locked pulse train of two-cycle
pulses at a 100-MHz repetition rate has of the order of a million
spectral lines. Control of the repetition rate leads to a spectrum
with a million accurately spaced spectral lines for use in
frequency standards [67]. There is one obstacle that needs to be
overcome—if the phase velocity and group velocity in the laser
resonator are not commensurate, as explained in Section VI,
the comb of spectral lines spaced by is displaced from
the origin. The line positions are not controlled. The accurate
positioning of the spectral lines is a task pursued by several
laboratories [68]–[77].
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