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Abstract

Between April and September of 2016 we did several variations of a standing wave experiment in an attempt
to verify the magnetic-dipole nature of our transition. Although unsuccessful, the experiments did provide some
interesting results.

1 A Brief Introduction: What were we trying to do?

Back in late 2015 and early 2016, we were working on a Rabi flopping experiment on an optical transition that we
suspected was a magnetic-dipole transition with the intention of characterizing the transition’s interaction with the
magnetic field of our beam. We used an intense green laser at 527 nm to induce the flopping behavior and observed
the transmission after various durations of flopping. However, it is well known that Rabi flopping can occur due to
interactions with the electric field as well [1, 2, 3, 4, 5]. Thus, there was still the need to conclusively verify that our
transition was indeed a magnetic-dipole transition and we weren’t seeing any electric effects. The fate of the lab was
in the balance.

2 Why did we try to do this?

2.1 For the Left-Handed Experiment

This Rabi flopping experiment was part of the longer term left-handed waves project. The goal of the left-handed
waves project is to demonstrate propagation of left-handed electromagnetic waves, as opposed to the usual right-
handed waves, in an atomic system at optical frequencies. Natural materials do not have the necessary magnetic and
electric responses to support such waves, so, in order to observe left-handed waves, we must be able to manipulate
these responses. The material that we used in our experiment was EU:Y2SO5 (YSO for short).

2.2 Why do we think this transition is a magnetic-dipole transition?

The first order of business, and that which concerns us here in this summary, was to find an atomic transition with
a strong magnetic response with no electric response1. After looking through the literature and running various
codes (Cowan code, RELIC), we identified the 7F0 →5D1 transition in Eu:YSO (referred to as the transition or our
transition from now on) as a potential candidate [6]. More evidence came in 2015 when Novotny et. al. [7] showed
that this transition was indeed a magnetic-dipole transition. However, their group used a different host crystal and
did not measure the magnetic-dipole moment of the transition.

3 How did we try to do this?

The short answer is several different ways. The long answer is

1The reason for this is because a materials response to an electric field is generally much strong than its response to the magnetic
field. See [6]
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Figure 1: Visualization of the beams. Each beam is described by a propagation direction n̂, electric field ~E, and a
magnetic field ~B. The beams are propagating in the yz plane with the z-axis bisecting the angle between propagation
directions.

3.1 Standing waves

Our first few attempts at identifying the nature of the transition were centered around an interesting property of
standing waves. Imagine two beams of the same frequency that cross each other at an angle 2θ. Without loss of
generality, we can put a coordinate system in such that the beams are propagating in the yz plane and each beam’s
k-vector is an angle θ from the z-axis. See Figure 1.

In the figure, n̂, ~E, and ~B are the propagation direction, elecric field vector, and magnetic field vector, respec-
tively2. We assume that the beams have the same amplitude and the electric fields are both pointing out of the page.
The same analysis can be done with the magnetic field pointing out of the page. In this case one would get the same
results except the electric and magnetic fields would be switched. In general, there can also be a phase difference
between the two beams. We have for the electric fields

~E1 = E0e
i(kn̂1·~r−ωt)x̂ (1a)

~E2 = E0e
i(kn̂2·~r−ωt+φ)x̂ (1b)

From Figure 1 we see that the propagation directions can be written as

n̂1 = sin θŷ + cos θẑ (2a)

n̂2 = − sin θŷ + cos θẑ (2b)

When we add the electric fields together we get

~E1 + ~E2 = E0e
i(k cos θz−ωt)(eik sin θy + e−i(k sin θy−φ))x̂

= E0e
i(k cos θz−ωt)eφ/2(eik sin θy−φ/2 + e−i(k sin θy−φ/2))x̂

= 2E0e
i(k cos θz−ωt+φ/2) cos(k sin θy − φ/2)x̂

(3)

We can find the direction of the magnetic field using Faraday’s law, n̂×Ê = ω ~B. Note that we are only considering
the direction of the fields here, not the magnitude. The specific relation between the amplitudes of the electric and

2We assume right-handed waves throughout.
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magnetic fields is not the important part; we only need to know that the electric field amplitude is much larger than
the magnetic field amplitude. From this equation, we can see that the directions of the magnetic fields are

B̂1 = cos θŷ − sin θẑ (4)

B̂2 = cos θŷ + sin θẑ (5)

so the full magnetic fields are

~B1 = B0e
i(kn̂1·~r−ωt)(cos θŷ − sin θẑ) (6a)

~B2 = B0e
i(kn̂2·~r−ωt+φ)(cos θŷ + sin θẑ) (6b)

which when added together give

~B1 + ~B2 = 2B0e
i(k cos θz−ωt+φ/2)[cos θ cos(k sin θy − φ/2)ŷ + 2i sin θ sin(k sin θy − φ/2)ẑ]. (7)

Taking the real parts of equations 3 and 7 gives us the physical fields,

<[ ~E1 + ~E2] = ~E =2E0 cos(k cos θz − ωt+ φ/2) cos(k sin θy − φ/2)x̂ (8)

<[ ~B1 + ~B2] = ~B =2B0 cos(k cos θz − ωt+ φ/2) cos θ cos(k sin θy − φ/2)ŷ

+2B0 sin(k cos θz − ωt+ φ/2) sin θ sin(k sin θy − φ/2)ẑ.
(9)

Equations 8 and 9 can be more easily understood by considering two completely antiparallel beams (θ = π/2).
Assuming φ = 0 for simplicity, the fields in this case are

~E = 2E0 cos(ωt) cos(ky)x̂ (10)

~B = −2B0 sin(ωt) sin(ky)ẑ (11)

This is a very interesting result! It shows that, when the beams are counterpropagating, the spatial maxima of the
electric and magnetic fields are π/2 out-of-phase (so are the temporal maxima, but those will average out in the
experiment). If our crystal really did only respond to the magnetic field, we could, in principle, see a standing wave
of crystal fluorescence (orange) alternating with the green of our laser due to scattering (our eye and cameras are
more sensitive to the electric field).

The challenge with seeing the standing wave pattern of these antiparallel beams is that it is extremely small. In
fact, it is by necessity right at the diffraction limit. However, the size of the standing wave pattern can be increased
by decreasing θ from π/2, or, in other words, transition the beams from antiparallel to parallel. As this is done,
the counterpropagating component of the k-vector, the y component, begins to decrease corresponding to a larger
effective wavelength in the y direction. The caveat is that as θ is decreased the magnetic field gains a component in
the y direction. This component is in phase with the electric field and grows as θ is decreased. Therefore we must
strike a balance; find a value of θ with an out-of-phase magnetic field standing wave pattern that is large enough to
image but isn’t washed out by the in-phase component of the magnetic field.

3.2 What Do We Expect to See?

An important question to ask is ”just how big is this standing wave going to be?” That’s a good question Zach, let
me fill you in.

The counterpropagating component of the wave vector for both the electric and magnetic fields is given by
ky = k sin θ = 2πn sin θ/λ where n is the index of refraction of the crystal and λ is the free space wavelength of the
laser. We must keep in mind, though, that it is the intensity we will be observing. Thus, we must square the field
amplitudes which corresponds to doubling the wavevector. This final intensity standing wave pattern can be thought
of as having an effective k-vector of 2π/λstanding with a length scale of λstanding. Equating these wavevectors gives
us the relation

2n sin θ

λ
=

1

λstanding
. (12)
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Figure 2: Plot of the ratio of the components of the magnetic field, By/Bz. Plot (a) shows the relation becoming
linear for large standing wave patterns and (b) is zoomed in to show to show the lower limit behavior.

Since we have an idea of how small of an object we can image, we can set this and solve equation 12 for θ as a
function of λstanding,

θ = arcsin

(
λ

2nλstanding

)
. (13)

The next thing we need to consider is the relative amplitudes of the magnetic field components. What we want
is to be able to destinguish fluorescence caused by the magnetic field from any fluorescence that might be caused by
the electric field. Because one of the magnetic field components is in phase with the electric field, we must be careful
in attributing the source of the fluorescence. Since the beams are oscillating much faster than the response time of
our detectors, the terms cos2(k cos θz − ωt) and sin2(k cos θz − ωt) will average out and cancel. Thus the amplitude
ratios are

By
Bz

= cot θ = cot

(
arcsin

(
λ

2nλstanding

))
. (14)

This equation can be expanded around small values of 1/λstanding to show the limiting behavior of the ratio as
λstanding becomes large.

cot

(
arcsin

(
λ

2nλstanding

))
≈ 2nλstanding

λ
− λ

4nλstanding
+ ... (15)

For our values of n and λ this is equal to3

6.83λstanding −
0.073

λstanding
+ ... (16)

Plots of equation 14 can be seen in Figure 2 depicting this linear behavior. Just for reference, the expansion of θ for
large λstanding is given by

θ ≈ λ

2nλstanding
+ ... =

0.146

λstanding
+ ... (17)

3.3 Standing Wave Experiment Variant 1: Crisscrossed Beams4

The idea for this experiment was to try and image the standing wave pattern with the beams almost copropagating
(θ small). To see the magnetic field pattern, a long pass filter was used to block the green light and let through the

3All lengths are in µm
4As it turns out, this was done before I started taking very thorough notes. Since that is the case, most of this was written from

memory.
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Figure 3: The experimental setup. A different filter was used depending on whether we were trying to observe the
electric or magnetic fields. The camera was connected to a computer through a BNC cable. The camera was a Watec
ccd camera originally meant for closed circuit security recording.

orange fluorescence. The electric field pattern would be seen using a short pass filter that blocked the orange. In
theory, by comparing the recorded intensity patterns of the electric and magnetic field, we would be able to see if
the orange pattern lined up with the green pattern like we expect. The imaging was done with a ccd camera.

We used an Air Force resolution target to get an idea of how small of a pattern could be seen using a short focal
length lens5. Based on the resolution target, the smallest object that could be resolved with the camera/lens combo
was about 5 µm. From equation 14, this means that the ratio of the in-phase to the out-of-phase components of the
magnetic field was 34.2, which corresponds to an angle of θ = 0.029 or 1.7°. However, since we would actually be
measuring intensities, the ratio we would expect to observe with the camera was 34.22 = 1170. The experimental
setup can be seen in Figure 3.

Using this setup we weres able to see standing wave patterns. In fact, the electric field standing wave was pretty
easy to see; we actually had to use ND filters6 to cut down on the brightness, see Figure 4a. The magnetic field,
however, was harder to see. The in-phase component of the magnetic field, Figure 4b, was barely visible. The factor
of 1170 reduction in intensity from the small crossing angle made it impossible to see the out-of-phase component.
Better results could have potentially been obtained with a better camera. The Watec camera used in this setup
did not allow for ISO control (the ISO automatically adjusted). The camera we used also didn’t have any cooling
mechanism or use any other noise reduction methods. We did not try this particular setup with the camera from
the localization experiment.

3.4 Standing Wave Experiment Variant 2: A New Hope?

With the setup from the previous section looking like it wasn’t going to work, we decided to change things up a
bit. Although we couldn’t image the standing wave when θ = π/2 directly, we still might be able to distinguish the
intensity maxima from the minima. The idea was to place a very small aperture between the crystal and the lens in
order to select a small slice of the standing wave. Although we might not be able to resolve the aperture, we know
what part of the standing wave the light is coming from. The amount of light getting through an aperture of width
w is given by ∫ x+w

x

sin2(kθ)dθ =
w

2
− 1

2k
(sin(x+ w) cos(x+ w)− sin(x) cos(x)) (18)

5I don’t remember what the focal length was. I do remember that it did not attach to the camera. The one that did attach to the
camera wasn’t strong enough. Improving the lens setup would go a long way towards improving the results of this experiment if it were
to be done again.

6I don’t rememebr what the strength of the ND filter was though.
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(a) (b)

Figure 4: Images taken with the setup in Figure 3. Figure 4a is the electric field standing wave after going through
an ND filter and Figure 4b is the in-phase magnetic field pattern. The out-of-phase pattern could not be imaged
this way.

where k is the wavevector of the standing wave pattern and x is the position of the aperture. If this expression gives
the in-phase component, the out-of-phase component is given by

w

2
+

1

2k
(sin(x+ w) cos(x+ w)− sin(x) cos(x)) (19)

Both of these expressions are in arbitrary units. See Figure 5 for more details.
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Figure 5: The expected in-phase and out-of-phase signals for different values of θ with the same size aperture. In
both plots, the out-of-phase signal is divided by the intensity ratio. Using a small value of θ can lead to a high
contrast for the in-phase signal, however due to the large ratio of intensities, the contrast of the out-of-phase signal is
much smaller (Figure 5a). At a larger angle, the out-of-phase component has higher contrast at the expense of lower
contrast for the in-phase component and a much shorter signal period, which requires finer control of the aperture
(Figure 5b)

We went through numerous iterations of this experiment while we smoothed out all the issues that came up. In
order to get a decent signal, there must be a balance between having a large enough out-of-phase signal, having fine
enough control over the aperture location, and not having an aperture width that is a multiple of the standing wave
scale (equations 18 and 19 are zero in this case), see Figure 5. In the last iteration we overcame these difficulties by
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using a 1 µm slit glued to a piezo and set θ = 0. With θ = 0 the out-of-phase component is maximized and using
a slit instead of of a pinhole increased the signal. Putting it on a piezo meant that we could have very fine control
over the displacement of the slit. The piezo also, at least in theory, helped us overcome another problem. Since our
standing wave was so small, even small mechanical vibrations could throw off our measurements. The piezo would
allow us to move the slit faster than these vibratons. The presence of vibrations also required us to measure the
magnetic and electric field standing waves at the same time. We did this by using a beam splitter, a couple of filters,
and a couple of photon counters, see Figure 6.

Piezo

Photon Counter

Photon Counter

Filters

Beam Splitter

1 μm slit

Figure 6: Experimental Setup. The actual setup included some mirrors to align the fibers. The piezo was driven at
many different frequencies. As we changed the driving freqency, it became apparent that there was some resonance
with the table, which added to the noise in the signal. This setup was on a separate table from the table with the
laser and SHG cavity on it. This was to prevent the piezo vibrations from adding more noise by disrupting the
incoming laser.

Dispite our best efforts, we were not able to see the magnetic field standing wave. The conclusion was that there
were two reasons for this: the signal was too small and there were too many vibrations caused by driving the piezo.
However, we were able to see the electric field, although just barely. This was confirmed by blocking the beam and
seeing the signal on the oscilloscope change. If we were to try this again, the best bet would be to try a larger value
of θ to increase the amplitude of the out-of-phase component as suggested in Figure 5b.
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