
Capacitively Coupled Qubits

I. DERIVATION OF HAMILTONIAN

The Hamiltonian of two capacitively coupled qubits is

H = H1 ⊗ 12 + 11 ⊗H2 + gσz1 ⊗ σz2 (Equation 1)

where the single qubit Hamiltonians are of the form:

H i,(LR) =

εi/2 ∆i

∆i −εi/2

 (Equation 2)

in the (LR) basis. The (LR) basis is the Left-Right basis, which is comprised of an electron

occupying the left dot and an electron occupying the right dot.

We will refer to εi and ∆i as the detuning and tunnel coupling of qubit i, respectively.

From this, we can write down the full Hamiltonian explicitly:

H
(LR)
0 =


1
2
(ε1 + ε2) + g ∆2 ∆1 0

∆2
1
2
(ε1 − ε2)− g 0 ∆1

∆1 0 1
2
(−ε1 + ε2)− g ∆2

0 ∆1 ∆2
1
2
(−ε1 − ε2) + g

 (Equation 3)

II. GENERAL PERTURBATIONS IN THE ROTATING FRAME

Because we are imagining moving around our parameter space adiabatically, it makes

sense for us to identify our logical states as the energy states of the Hamiltonian. So for the

rest of this section, we will not use the (LR) basis, instead using the energy basis:
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H0 =


E11 0 0 0

0 E10 0 0

0 0 E01 0

0 0 0 E00

 (Equation 4)

We may also wish to add some perturbation to this Hamiltonian, such that

H = H0 +H1 (Equation 5)

where H0 is given above and our perturbation is very general:

H1 =


H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

 cosωt (Equation 6)

We wish to view our Hamiltonian H in the rotating frame.

The time dependent Schrödinger equation is

i~
∂

∂t
|ψ〉 = H|ψ〉 (Equation 7)

If we define

|ψR〉 = UR|ψ〉 (Equation 8)

then
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i~
∂

∂t
|ψR〉 = i~

∂

∂t
UR|ψ〉 (Equation 9)

= i~
(
∂

∂t
UR

)
|ψ〉+ i~UR

(
∂

∂t
|ψ〉
)

(Equation 10)

= i~
(
∂

∂t
UR

)
|ψ〉+ URH|ψ〉 (Equation 11)

= i~
(
∂

∂t
UR

)
|ψ〉+ URHU

†
R|ψR〉 (Equation 12)

=

(
i~
(
∂

∂t
UR

)
U †R + URHU

†
R

)
|ψR〉 (Equation 13)

We can take

UR = exp (iH0t/~) (Equation 14)

then

i~
∂

∂t
|ψR〉 =

(
−H0 + UR(H0 +H1)U

†
R

)
|ψR〉 (Equation 15)

= URH1U
†
R|ψR〉 (Equation 16)

= cosωt


H11 H12e

i(E11−E10)t/~ H13e
i(E11−E01)t/~ H14e

i(E11−E00)t/~

H21e
−i(E11−E10)t/~ H22 H23e

i(E10−E01)t/~ H24e
i(E10−E00)t/~

H31e
−i(E11−E01)t/~ H32e

−i(E10−E01)t/~ H33 H34e
i(E01−E00)t/~

H41e
−i(E11−E00)t/~ H42e

−i(E10−E00)t/~ H43e
−i(E01−E00)t/~ H44

 |ψR〉
(Equation 17)

III. APPLYING AC PULSES TO SYSTEM

In our system, it is useful to set our two detunings ε1 and ε2 to zero. When this is the

case then our unperturbed Hamiltonian becomes
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H0 =


λ1 0 0 0

0 λ2 0 0

0 0 −λ2 0

0 0 0 −λ1

 (Equation 18)

where

λ1 =
√

(∆1 + ∆2)2 + g2, λ2 =
√

(∆1 −∆2)2 + g2 (Equation 19)

This makes the perturbation in the rotating frame (shown in (Equation 17)):

i~
∂

∂t
|ψR〉 = cosωt


H11 H12e

i(λ1−λ2)t/~ H13e
i(λ1+λ2)t/~ H14e

i(2λ1)t/~

H21e
−i(λ1−λ2)t/~ H22 H23e

i(2λ2)t/~ H24e
i(λ1+λ2)t/~

H31e
−i(λ1+λ2)t/~ H32e

−i(2λ2)t/~ H33 H34e
i(λ1−λ2)t/~

H41e
−i(2λ1)t/~ H42e

−i(λ1+λ2)t/~ H43e
−i(λ1−λ2)t/~ H44

 |ψR〉
(Equation 20)

To see what these perturbative Hamiltonians will look like, let us consider pulsing the

detuning of the first dot.

In the (LR) basis, this matrix takes the form

H
ε1,(LR)
1 =

1

2


B 0 0 0

0 B 0 0

0 0 −B 0

0 0 0 −B

 cosωt (Equation 21)

However, to use (Equation 20), we must first change into the energy basis. After applying

the unitary transformation, we get:
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Hε1
1 =

1

2


0 A1 × Sign(∆1 −∆2) −A2 0

A1 × Sign(∆1 −∆2) 0 0 −A2 × Sign(∆1 −∆2)

−A2 0 0 −A1

0 −A2 × Sign(∆1 −∆2) −A1 0

 cos (ωt)

(Equation 22)

where A1 and A2 are constants, and functions of ∆1, ∆2, and g.

Which, in the rotating frame, becomes

i~
∂

∂t
|ψR〉 =

1

2
cosωt


0 A1e

i(λ1−λ2)t/~ −A2e
i(λ1+λ2)t/~ 0

A1e
−i(λ1−λ2)t/~ 0 0 −A2e

i(λ1+λ2)t/~

−A2e
−i(λ1+λ2)t/~ 0 0 −A1e

i(λ1−λ2)t/~

0 −A2e
−i(λ1+λ2)t/~ −A1e

−i(λ1−λ2)t/~ 0

 |ψR〉
(Equation 23)

if ∆1 > ∆2, and

i~
∂

∂t
|ψR〉 =

1

2
cosωt


0 −A1e

i(λ1−λ2)t/~ −A2e
i(λ1+λ2)t/~ 0

−A1e
−i(λ1−λ2)t/~ 0 0 A2e

i(λ1+λ2)t/~

−A2e
−i(λ1+λ2)t/~ 0 0 −A1e

i(λ1−λ2)t/~

0 A2e
−i(λ1+λ2)t/~ −A1e

−i(λ1−λ2)t/~ 0

 |ψR〉
(Equation 24)

if ∆1 < ∆2.

Let us say that ∆1 > ∆2, meaning that the Hamiltonian in the rotating frame looks

like (Equation 23). If we pulse at a frequency ω = (λ1 + λ2)/~, then in the rotating wave

approximation, the equation of motion becomes
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i~
∂

∂t
|ψR〉 =

1

4


0 0 −A2 0

0 0 0 −A2

−A2 0 0 0

0 −A2 0 0

 |ψR〉 (Equation 25)

which corresponds to rotations around the X axis of the second qubit. The Rabi frequency

associated with this is A2/~.

The wiki has a full list of all of the pulses, with all of the associated rotation matrices.

IV. LIST OF LOGICAL GATES

• Z1 gate (Z on qubit 1)

– Wait for a time τ = h
2(λ1+λ2)

(always on)

• Z2 gate (Z on qubit 2)

– Wait for a time τ = h
2(λ1−λ2) (always on)

• X1 gate (X on qubit 1)

– Pulse ε1 at a frequency of ωAC = (λ1 + λ2)/~ for a time τ = 2h
A2

• X2 gate (X on qubit 2)

– Pulse ε2 at a frequency of ωAC = (λ1 − λ2)/~ for a time τ = 2h
C1

• CNOT1 gate (CNOT with qubit 1 as control)

– Pulse ε1 at a frequency of ωAC = (λ1 − λ2)/~ for a time τ = h
A1

– Pulse ε2 at a frequency of ωAC = (λ1 − λ2)/~ for a time τ = h
C1

• CNOT2 gate (CNOT with qubit 2 as control)

– Pulse ε2 at a frequency of ωAC = (λ1 + λ2)/~ for a time τ = h
C2
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– Pulse ε1 at a frequency of ωAC = (λ1 + λ2)/~ for a time τ = 3h
A2

• SWAP

– Pulse either ∆1 or ∆2 at a frequency of ωAC = 2λ2/~ for a time τ = 2hλ2
Bg
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