Capacitively Coupled Qubits

I. DERIVATION OF HAMILTONIAN

The Hamiltonian of two capacitively coupled qubits is

H=H®1,+1,® H* + g0, ® 0.5 (Equation 1)

where the single qubit Hamiltonians are of the form:

HY R — / (Equation 2)
Ai —61/2

in the (LR) basis. The (LR) basis is the Left-Right basis, which is comprised of an electron
occupying the left dot and an electron occupying the right dot.
We will refer to ¢; and A; as the detuning and tunnel coupling of qubit 7, respectively.

From this, we can write down the full Hamiltonian explicitly:

Hea+e)+yg Ay Ay 0
A e —e) — 0 A
HM = ? sl —e) =g ' (Equation 3)
A 0 %(—61 +€e)—g A,
0 Ay Ay %(_51 —€)+yg

II. GENERAL PERTURBATIONS IN THE ROTATING FRAME

Because we are imagining moving around our parameter space adiabatically, it makes
sense for us to identify our logical states as the energy states of the Hamiltonian. So for the

rest of this section, we will not use the (LR) basis, instead using the energy basis:
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Ey 0 0 0

0 EFyp 0O O .

Hy = (Equation 4)
0 0 Epn O
0 0 0 Ey

We may also wish to add some perturbation to this Hamiltonian, such that

H=Hy+ H; (Equation 5)

where Hj is given above and our perturbation is very general:

Hyy Hyy Hiz Hiy
Hy Hyy Hyz Hay
Hs Hsy Hszy Hay
Hy Hy Hyz Hy

;
Il

cos wt (Equation 6)

We wish to view our Hamiltonian H in the rotating frame.

The time dependent Schrodinger equation is

ih%h/)) = H|y) (Equation 7)

If we define

[Vr) = UrlY) (Equation 8)

then



0 0
iha’%ﬁ ihaUR’w (Equation 9)
0 0
=ih (&UR> |Y) + ihUg (§|w>> (Equation 10)
0
=ih (&UR> V) + UrH|v) (Equation 11)
0 )
= ih (&UR> ) + UrHUL|R) (Equation 12)
0
= (zh <§UR) Ul + URHUIT%> |YR) (Equation 13)
We can take
Ur = exp (iHot/h) (Equation 14)
then
0 t .
zhawR} = <—H0 + Ur(Ho + Hl)UR> k) (Equation 15)
= UpH UL |¢g) (Equation 16)
Hll H12ei(E11*E10)t/h Hlse’i(Elle()l)t/h H14ei(E117E00)t/h
H216—i(E11—E10)t/ﬁ Hoyy H236i(E10—E01)t/ﬁ H2461(E10—E00)t/’7
= coswt A , A YR)
HSle—z(Eu—E()l)t/ﬁ H32e—Z(E10—E01)t/ﬁ H33 H346’L(E01—E00)t/ﬁ
H41€—i(E11—E()0)t/ﬁ H42e—i(E10—Eoo)t/h H436—i(E01—E00)t/ﬁ H44

(Equation 17)

IIT. APPLYING AC PULSES TO SYSTEM

In our system, it is useful to set our two detunings €; and e; to zero. When this is the

case then our unperturbed Hamiltonian becomes
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M0 0 0

0% 0 0 '
Hy = (Equation 18)
0 0 =X O
00 0 =X\
where
AL = \/(Al + Ag)% + g2, Ay = \/(Al — A9)? + g2 (Equation 19)

This makes the perturbation in the rotating frame (shown in (Equation 17))):

Hy; HpetP1—22)t/h H136i(>\1+)\2)t/h HyeiMt/h
0 Hore—tAa=X2)t/h H Houei@)t/h it ha)t/h
ih—|R) = coswt | " 22 23 24 )
ot Hyye {220t/ o p=i(222)t/h His Hyyeia—a)i/h
Hype i@0t/h - foe=iatd)t/h fr o e=iAa=A2)t/h Hy

(Equation 20)
To see what these perturbative Hamiltonians will look like, let us consider pulsing the
detuning of the first dot.

In the (LR) basis, this matrix takes the form

B0 0 0

] 110B 0 0
HOR = 2 coswt (Equation 21)

2100 -B 0

00 0 -B

However, to use (Equation 20)), we must first change into the energy basis. After applying

the unitary transformation, we get:



0 Al X Slgﬂ(Al — Ag) _A2 0

1 Al X SlgH(Al — Ag) 0 0 _A2 X Slgn(Al — Ag)
H' == cos (wt)
2 — Ay 0 0 —A
0 —AQ X Slgn(Al — Ag) —Al 0

(Equation 22)
where A; and As are constants, and functions of Ay, Ay, and g.

Which, in the rotating frame, becomes

0 Alei(Al—Ag)t/ﬁ _Azei(A1+)\2)t/ﬁ O
a 1 A e—i()\l—)\z)t/ﬁ 0 0 _A ei()\l-i-/\z)t/ﬁ
ih—|Yr) = = coswt ! , 2 ‘ |YR)
ot 2 — Aye—iOatra)t/h 0 0 — Ayeia=r)/h
0 _A26*i(>\1+>\2)t/h _Alefi(klfh)t/h 0

(Equation 23)

if Al > A27 and

0 _Alei()q—)\z)t/ﬁ _A26i()\1+>\2)t/7i 0
a 1 _A e_i()\l_)\Q)t/h 0 O A ei()\l-i-)\z)t/ﬁ
ih=|tr) = Scoswt | i [r)
ot 2 — Age—iatda)t/h 0 0 — A i)t/
0 AQG*Z'()\1+>\2)t/h _Ale*i(klsz)t/h 0

(Equation 24)
if Al < AQ.

Let us say that A; > A,, meaning that the Hamiltonian in the rotating frame looks

like (Equation 23). If we pulse at a frequency w = (A; + A2)/A, then in the rotating wave

approximation, the equation of motion becomes
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0 0 -4, 0
1 0 0 0 —A
4 —Ay 0 0 0

0 -4, 0 0

ih%hﬁR) = |YR) (Equation 25)

which corresponds to rotations around the X axis of the second qubit. The Rabi frequency
associated with this is Ay /A.

The wiki has a full list of all of the pulses, with all of the associated rotation matrices.

IV. LIST OF LOGICAL GATES

7y gate (Z on qubit 1)

— Wait for a time 7 = m (always on)
e 7y gate (Z on qubit 2)
— Wait for a time 7 = m (always on)

X, gate (X on qubit 1)

— Pulse ¢ at a frequency of wac = (A + Ay)/h for a time 7 = Z—Z

X, gate (X on qubit 2)

— Pulse €, at a frequency of wac = (A — Ag)/h for a time 7 = é—?
e CNOT, gate (CNOT with qubit 1 as control)

— Pulse ¢ at a frequency of wac = (A — Ag)/h for a time 7 = Ail

— Pulse €, at a frequency of wac = (A — Ag)/h for a time 7 = cil
e CNOT; gate (CNOT with qubit 2 as control)

— Pulse €, at a frequency of wac = (A1 + \2) /A for a time 7 = C%
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— Pulse ¢ at a frequency of wac = (A + Ay) /A for a time 7 = Z_Z

e SWAP

2hA2

— Pulse either A; or A, at a frequency of wac = 2y /h for a time 7 = N
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