#acl Narf:read,write,delete,revert,admin FacultyGroup:read,write All:read == Relativity == ''PIRA classification 7F'' = 7F10. Special Relativity = ||<10% style="" & quot;text-align:center& quot; " ">'''PIRA #''' ||'''Demonstration Name''' ||'''Subsets''' ||<60% style="" & quot;text-align:center& quot; " ">'''Abstract''' || ||<10% style="" & quot;text-align:center& quot; " ">7F10.05||Gravitational surface|| ||<60% style="" & quot;text-align:center& quot; " ">see 8C20.20|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.10||Lorentz transformation machine||pira1000||<60% style="" & quot;text-align:center& quot; " ">A machine shows the behavior of clocks and measuring rods in two reference frames.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.20a||Flow ripple tank||pira1000||<60% style="" & quot;text-align:center& quot; " ">Wave propagation upstream and downstream is shown with a flow ripple tank.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.20b||Flow ripple tank - twin source||pira1000||<60% style="" & quot;text-align:center& quot; " ">Twin source interference in a moving medium is demonstrated with a flow ripple tank and variable phase generator.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.25||Foam rubber roller||pira1000||<60% style="" & quot;text-align:center& quot; " "> || ||<10% style="" & quot;text-align:center& quot; " ">7F10.26||Fitzgerald contraction model|| ||<60% style="" & quot;text-align:center& quot; " ">A stick traveling at constant velocity makes a traveling dimple in an elastic sheet.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.30||Time dilation simulation|| ||<60% style="" & quot;text-align:center& quot; " ">A folding carpenters ruler is used to simulate the effects of time dilation in a "bouncing light pulse clock".|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.31||Time dilation - twin paradox|| ||<60% style="" & quot;text-align:center& quot; " ">An explicit formula for differential aging from acceleration. How do clocks, initially synched in the laboratory frame, fall out of sync as their speed relative to the lab increases. || ||<10% style="" & quot;text-align:center& quot; " ">7F10.32||Relativistic length contraction|| ||<60% style="" & quot;text-align:center& quot; " ">The "pole in a garage" paradox is demonstrated using a collapsible pointer and two cardboard boxes. Simple diagrams for representing relativistic length contraction and time dilation.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.35 ||induction coil relativity|| ||<60% style="" & quot;text-align:center& quot; " ">On using the simple induction coil and galvanometer as a special relativity demonstration.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.40||Computer relativistic phenomena|| ||<60% style="" & quot;text-align:center& quot; " ">The Edwin F Taylor Spacetime Software is used to generate printouts demonstrating aberration, the Doppler effect, the headlight effect, etc.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.41||Many colored relativity engine|| ||<60% style="" & quot;text-align:center& quot; " ">The author's review of a simple program about relativistic space and time that requires no knowledge of physics, algebra, or geometry.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.50||Cylindrical relativity model|| ||<60% style="" & quot;text-align:center& quot; " ">A spacetime diagram rolled on a cardboard tube is used to demonstrate the nature of simultaneity and the propagation of light in a rotating coordinate system.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.55||Geometrical appearances|| ||<60% style="" & quot;text-align:center& quot; " ">Some examples are illustrated in detail.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.60 ||Lorentz transformation / time dilation ||pira200 ||<60% style="" & quot;text-align:center& quot; " ">The Mechanical Universe, chapter 42, and the Hewitt film "Relativistic Time Dilation". https://www.youtube.com/watch?v=feBT0Anpg4A || = 7F20. General Relativity = ||<10% style="" & quot;text-align:center& quot; " ">'''PIRA #''' ||'''Demonstration Name''' ||'''Subsets'''||<60% style="" & quot;text-align:center& quot; " ">'''Abstract''' || ||<10% style="" & quot;text-align:center& quot; " ">7F20.01||General relativity primer|| ||<60% style="" & quot;text-align:center& quot; " ">A tutorial article|| ||<10% style="" & quot;text-align:center& quot; " ">7F20.10||Film loop review article|| ||<60% style="" & quot;text-align:center& quot; " ">Two film loops, "Uniformly Accelerated Reference Frame", and "Twin Paradox", are thoroughly reviewed.|| [[Demonstrations]] [[Instructional|Home]]