Size: 404
Comment:
|
← Revision 5 as of 2018-07-19 18:05:41 ⇥
Size: 7932
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
Line 4: | Line 3: |
Line 8: | Line 6: |
||<:10%>'''PIRA #'''||<:>'''Demonstration Name'''||<:60%>'''Abstract'''|| | ||<10% style="" & quot;text-align:center& quot; " ">'''PIRA #''' ||<style="" & quot;text-align:center& quot; "">'''Demonstration Name''' ||<style="" & quot;text-align:center& quot; "">'''Subsets''' ||<60% style="" & quot;text-align:center& quot; " ">'''Abstract''' || ||<10% style="" & quot;text-align:center& quot; " ">7F10.05||<style="" & quot;text-align:center& quot; "">Gravitational surface||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">see 8C20.20|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.10||<style="" & quot;text-align:center& quot; "">Lorentz transformation machine||<style="" & quot;text-align:center& quot; "">pira1000||<60% style="" & quot;text-align:center& quot; " ">A machine shows the behavior of clocks and measuring rods in two reference frames.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.20a||<style="" & quot;text-align:center& quot; "">Flow ripple tank||<style="" & quot;text-align:center& quot; "">pira1000||<60% style="" & quot;text-align:center& quot; " ">Wave propagation upstream and downstream is shown with a flow ripple tank.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.20b||<style="" & quot;text-align:center& quot; "">Flow ripple tank - twin source||<style="" & quot;text-align:center& quot; "">pira1000||<60% style="" & quot;text-align:center& quot; " ">Twin source interference in a moving medium is demonstrated with a flow ripple tank and variable phase generator.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.25||<style="" & quot;text-align:center& quot; "">Foam rubber roller||<style="" & quot;text-align:center& quot; "">pira1000||<60% style="" & quot;text-align:center& quot; " "> || ||<10% style="" & quot;text-align:center& quot; " ">7F10.26||<style="" & quot;text-align:center& quot; "">Fitzgerald contraction model||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">A stick traveling at constant velocity makes a traveling dimple in an elastic sheet.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.30||<style="" & quot;text-align:center& quot; "">Time dilation simulation||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">A folding carpenters ruler is used to simulate the effects of time dilation in a "bouncing light pulse clock".|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.31||<style="" & quot;text-align:center& quot; "">Time dilation - twin paradox||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">An explicit formula for differential aging from acceleration. How do clocks, initially synched in the laboratory frame, fall out of sync as their speed relative to the lab increases. || ||<10% style="" & quot;text-align:center& quot; " ">7F10.32||<style="" & quot;text-align:center& quot; "">Relativistic length contraction||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">The "pole in a garage" paradox is demonstrated using a collapsible pointer and two cardboard boxes. Simple diagrams for representing relativistic length contraction and time dilation.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.35 ||<style="" & quot;text-align:center& quot; "">induction coil relativity||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">On using the simple induction coil and galvanometer as a special relativity demonstration.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.40||<style="" & quot;text-align:center& quot; "">Computer relativistic phenomena||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">The Edwin F Taylor Spacetime Software is used to generate printouts demonstrating aberration, the Doppler effect, the headlight effect, etc.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.41||<style="" & quot;text-align:center& quot; "">Many colored relativity engine||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">The author's review of a simple program about relativistic space and time that requires no knowledge of physics, algebra, or geometry.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.50||<style="" & quot;text-align:center& quot; "">Cylindrical relativity model||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">A spacetime diagram rolled on a cardboard tube is used to demonstrate the nature of simultaneity and the propagation of light in a rotating coordinate system.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.55||<style="" & quot;text-align:center& quot; "">Geometrical appearances||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">Some examples are illustrated in detail.|| ||<10% style="" & quot;text-align:center& quot; " ">7F10.60 ||<style="" & quot;text-align:center& quot; "">Lorentz transformation / time dilation ||<style="" & quot;text-align:center& quot; "">pira200 ||<60% style="" & quot;text-align:center& quot; " ">The Mechanical Universe, chapter 42, and the Hewitt film "Relativistic Time Dilation". https://www.youtube.com/watch?v=feBT0Anpg4A || |
Line 11: | Line 25: |
||<:10%>'''PIRA #'''||<:>'''Demonstration Name'''||<:60%>'''Abstract'''|| | ||<10% style="" & quot;text-align:center& quot; " ">'''PIRA #''' ||<style="" & quot;text-align:center& quot; "">'''Demonstration Name''' ||<style="" & quot;text-align:center& quot; "">'''Subsets'''||<60% style="" & quot;text-align:center& quot; " ">'''Abstract''' || ||<10% style="" & quot;text-align:center& quot; " ">7F20.01||<style="" & quot;text-align:center& quot; "">General relativity primer||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">A tutorial article|| ||<10% style="" & quot;text-align:center& quot; " ">7F20.10||<style="" & quot;text-align:center& quot; "">Film loop review article||<style="" & quot;text-align:center& quot; ""> ||<60% style="" & quot;text-align:center& quot; " ">Two film loops, "Uniformly Accelerated Reference Frame", and "Twin Paradox", are thoroughly reviewed.|| |
Line 14: | Line 30: |
[[Demonstrations]] | |
Line 15: | Line 32: |
[:Demonstrations:Demonstrations] [:Instructional:Home] |
[[Instructional|Home]] |
Relativity
PIRA classification 7F
7F10. Special Relativity
PIRA # |
Demonstration Name |
Subsets |
Abstract |
7F10.05 |
Gravitational surface |
|
see 8C20.20 |
7F10.10 |
Lorentz transformation machine |
pira1000 |
A machine shows the behavior of clocks and measuring rods in two reference frames. |
7F10.20a |
Flow ripple tank |
pira1000 |
Wave propagation upstream and downstream is shown with a flow ripple tank. |
7F10.20b |
Flow ripple tank - twin source |
pira1000 |
Twin source interference in a moving medium is demonstrated with a flow ripple tank and variable phase generator. |
7F10.25 |
Foam rubber roller |
pira1000 |
|
7F10.26 |
Fitzgerald contraction model |
|
A stick traveling at constant velocity makes a traveling dimple in an elastic sheet. |
7F10.30 |
Time dilation simulation |
|
A folding carpenters ruler is used to simulate the effects of time dilation in a "bouncing light pulse clock". |
7F10.31 |
Time dilation - twin paradox |
|
An explicit formula for differential aging from acceleration. How do clocks, initially synched in the laboratory frame, fall out of sync as their speed relative to the lab increases. |
7F10.32 |
Relativistic length contraction |
|
The "pole in a garage" paradox is demonstrated using a collapsible pointer and two cardboard boxes. Simple diagrams for representing relativistic length contraction and time dilation. |
7F10.35 |
induction coil relativity |
|
On using the simple induction coil and galvanometer as a special relativity demonstration. |
7F10.40 |
Computer relativistic phenomena |
|
The Edwin F Taylor Spacetime Software is used to generate printouts demonstrating aberration, the Doppler effect, the headlight effect, etc. |
7F10.41 |
Many colored relativity engine |
|
The author's review of a simple program about relativistic space and time that requires no knowledge of physics, algebra, or geometry. |
7F10.50 |
Cylindrical relativity model |
|
A spacetime diagram rolled on a cardboard tube is used to demonstrate the nature of simultaneity and the propagation of light in a rotating coordinate system. |
7F10.55 |
Geometrical appearances |
|
Some examples are illustrated in detail. |
7F10.60 |
Lorentz transformation / time dilation |
pira200 |
The Mechanical Universe, chapter 42, and the Hewitt film "Relativistic Time Dilation". https://www.youtube.com/watch?v=feBT0Anpg4A |
7F20. General Relativity
PIRA # |
Demonstration Name |
Subsets |
Abstract |
7F20.01 |
General relativity primer |
|
A tutorial article |
7F20.10 |
Film loop review article |
|
Two film loops, "Uniformly Accelerated Reference Frame", and "Twin Paradox", are thoroughly reviewed. |